Статистическая физика и термодинамика

Статистический и термодинамический методы исследования . Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический ) и термодинами­ческий . Первый лежит в основе молекулярной физики, второй - термодинамики.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460-370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822-1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах - фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Основные постулаты молекулярно-кинетической теории (МКТ)

1. Все тела в природе состоят из огромного количества мельчайших частиц (атомов и молекул).

2. Эти частицы находятся в непрерывном хаотическом (беспорядочном) движении.

3. Движение частиц связано с температурой тела, поэтому оно называется тепловым движением .

4. Частицы взаимодействуют друг с другом.

Доказательства справедливости МКТ: диффузия веществ, броуновское движение, теплопроводность.

Физические величины, использующиеся для описания процессов в молекулярной физике делят на два класса:

микропараметры – величины, описывающие поведения отдельных частиц (масса атома (молекулы), скорость, импульс, кинетическая энергия отдельных частиц);
макропараметры – величины, не сводимые к отдельным частицам, но характеризующие свойства вещества в целом. Значения макропараметров определяются результатом одновременного действия огромного количества частиц. Макропараметры – это температура, давление, концентрация и т. п.

Температура - одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы - термодина­мическую и Международную практическую , градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С).

В термодинамической шкале температура замерзания воды равна 273,15 К (при том же

давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической

шкале связаны соотношением

Т = 273,15 + t .

Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно. 0 К – это температура, при которой теоретически должно прекратиться всякое тепловое движение частиц вещества.

В молекулярной физике выводится связь между макропараметрами и микропараметрами. Например, давление идеального газа может быть выражено формулой:

position:relative; top:5.0pt"> - масса одной молекулы, - концентрация, font-size: 10.0pt">Из основного уравнения МКТ можно получить удобное для практического использования уравнение:

font-size: 10.0pt">Идеальный газ – это идеализированная модель газа, в которой считают, что:

1. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2. между молекулами отсутствуют силы взаимодействия (притяжения и отталкивания на расстоянии;

3. столкновения молекул между собой и со стенками сосуда абсолютно упругие.

Идеальный газ – это упрощенная теоретическая модель газа. Но, состояние многих газов при определенных условиях могут быть описаны этим уравнением.

Для описания состояния реальных газов в уравнение состояния необходимо ввести поправки. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше. где b - молярный объем, занимаемый самими молекулами.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е. где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, V m - молярный объем.

В итоге мы получим уравнение состояния реального газа или уравнение Ван-дер-Ваальса :

font-size:10.0pt;font-family:" times new roman> Физический смысл температуры: температура – это мера интенсивности теплового движения частиц веществ. Понятие температуры не применимо к отдельной молекуле. Лишь для достаточно большого количества молекул, создающих некое количество вещества, появляется смысл относить термин температуры.

Для идеального одноатомного газа можно записать уравнение:

font-size:10.0pt;font-family:" times new roman>Первое экспериментальное определение скоростей молекул выпо­лнено немецким физиком О. Штерном (1888-1970). Его опыты позволили также оценить распределение молекул по скоростям.

«Противостояние» между потенциальными энергиями связи молекул и энергиями теплового движения молекул (кинетическими молекулами) приводит к существованию различных агрегатных состояний вещества.

Термодинамика

Подсчитав количество молекул в данной системе и оценив их средние кинетическую и потенциальную энергии, можно оценить внутреннюю энергию данной системы U .

font-size:10.0pt;font-family:" times new roman>Для идеального одноатомного газа .

Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики , установленное в результате обобщения многовековых опытных данных:

В замкнутом цикле , поэтому font-size:10.0pt;font-family:" times new roman>КПД теплового двигателя: .

Из первого начала термодинамики следует, что КПД теплового двигателя не может быть больше 100%.

Постулируя существование различных форм энергии и связи между ними первое начало ТД ничего не говорит о направленности процессов в природе. В полном соответствии с первым началом можно мысленно сконструировать двигатель, в котором за счет уменьшения внутренней энергии вещества совершалась бы полезная работа. Например, вместо горючего в тепловом двигателе использовалась бы вода, и за счет охлаждения воды и превращения ее в лед совершалась бы работа. Но подобные самопроизвольные процессы в природе не происходят.

Все процессы в природе можно разделить на обратимые и необратимые.

Одной из основных проблем в классическом естествознании долгое время оставалась проблема объяснения физической природы необратимости реальных процессов. Суть проблемы заключается в том, что движение материальной точки, описываемое II законом Ньютона (F = ma), обратимо, тогда как большое число материальных точек ведет себя необратимо.

Если число исследуемых частиц невелико (например, две частицы на рисунке а)), то мы не сможем определить, куда направлена ось времени: слева направо или справа налево, так как любая последовательность кадров явлется одинаково возможной. Это и есть обратимое явление . Ситуация существенно меняется, если число частиц очень велико (рис. б)). В этом случае направление времени определяется однозначно: слева направо, так как невозможно представить, что равномерно распределенные частицы сами по себе, без каких-то внешних воздействий соберутся в углу «ящика». Такое поведение, когда состояние системы может изменяться только в определенной последовательности, называется необратимым . Все реальные процессы необратимы.

Примеры необратимых процессов: диффузия, теплопроводность, вязкое течение. Почти все реальные процессы в природе являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от прошлого к будущему. Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же, несмотря на обратимость поведения одной частицы, ансамбль из большого числа таких частиц ведет себя необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых выдающихся ученых XVIII–XIX вв.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Хотя общее количество энергии в изолированной системе сохраняется, ее качественный состав меняется необратимо .

1. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

2. В другой формулировке: «Теплота самопроизвольно может переходить только от более нагретого тела к менее нагретому».

3. Третья формулировка: «Энтропия в замкнутой системе может только увеличиваться».

Второе начало термодинамики запрещает существование вечного двигателя второго рода , т. е. машины, способной совершать работу за счет переноса тепла от холодного тела к горячему. Второй закон термодинамики указывает на существование двух различных форм энергии - теплоты как меры хаотического движения частиц и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло, но тепло нельзя полностью превратить в работу. Таким образом, неупорядоченную форму энергии нельзя без каких либо дополнительных действий превратить в упорядоченную.

Полное превращение механической работы в теплоту мы делаем каждый раз, нажимая на педаль тормоза в автомобиле. А вот без каких-либо дополнительных действий в замкнутом цикле работы двигателя перевести всю теплоту в работу нельзя. Часть тепловой энергии неизбежно расходуется на нагревание двигателя, плюс движущийся поршень постоянно совершает работу против сил трения (на это тоже расходуется запас механической энергии).

Но смысл второго начала термодинамики оказался еще глубже.

Еще одной формулировкой второго начала термодинамики является следующее утверждение: энтропия замкнутой системы является неубывающей функцией, то есть при любом реальном процессе она либо возрастает, либо остается неизменной.

Понятие энтропии, введенное в термодинамику Р. Клаузиусом, носило первоначально искусственный характер. Выдающийся французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, так как, по крайней мере в принципе, вполне поддается измерению».

По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой равно количеству тепла , полученному системой, деленному на абсолютную температуру:

font-size:10.0pt;font-family:" times new roman>В соответствии со вторым законом термодинамики в изолированных системах, т. е. системах, не обменивающихся с окружающей средой энергией, неупорядоченное состояние (хаос) не может самостоятельно перейти в порядок. Таким образом, в изолированных системах энтропия может только расти. Эта закономерность получила название принципа возрастания энтропии . Согласно этому принципу, любая система стремится к состоянию термодинамического равновесия, которое отождествляется с хаосом. Поскольку увеличение энтропии характеризует изменения во времени замкнутых систем, то энтропия выступает в качестве своеобразной стрелы времени .

Состояние с максимальной энтропией мы назвали неупорядоченным, а с малой энтропией - упорядоченным. Статистическая система, если она предоставлена самой себе, переходит из упорядоченного в неупорядоченное состояние с максимальной энтропией, соответствующей данным внешним и внутренним параметрам (давление, объем, температура, число частиц и т. д.).

Людвиг Больцман связал понятие энтропии с понятием термодинамической вероятности: font-size:10.0pt;font-family:" times new roman> Таким образом, любая изолированная система, предоставленная сама себе, с течением времени переходит от состояния упорядоченности в состояние максимального беспорядка (хаоса).

Из этого принципа вытекает пессимистическая гипотеза о тепловой смерти Вселенной, сформулированная Р. Клаузиусом и У. Кельвином, в соответствии с которой:

· энергия Вселенной всегда постоянна;

· энтропия Вселенной всегда возрастает.

Таким образом, все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующему состоянию наибольшего хаоса и дезорганизации . Все виды энергии деградируют, превратившись в тепло, и звезды закончат свое существование, отдав энергию в окружающее пространство. Установится постоянная температура лишь на насколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие планеты и звезды. Не будет ничего - ни источников энергии, ни жизни.

Такая мрачная перспектива предсказывалась физикой вплоть до 60-х годов ХХ столетия, хотя выводы термодинамики противоречили результатам исследований в биологии и социальных науках. Так, эволюционная теория Дарвина свидетельствовала, что живая природа развивается преимущественно в направлении усовершенствования и усложнения новых видов растений и животных. История, социология, экономика, другие социальные и гуманитарные науки так же показывали, что в обществе, несмотря на отдельные зигзаги развития, в целом наблюдается прогресс.

Опыт и практическая деятельность свидетельствовали, что понятие закрытой или изолированной системы является достаточно грубой абстракцией , упрощающей действительность, поскольку в природе трудно найти системы, не взаимодействующие с окружающей средой. Противоречие стало разрешаться, когда в термодинамике вместо понятия закрытой изолированной системы ввели фундаментальное понятие открытой системы, т. е. системы, обменивающейся с окружающей средой веществом, энергией и информацией.

Статистическая физика занимает видное место в современной науке и заслуживает специального рассмотрения. Она описывает образование из движений частиц параметров макросистем. Например, такие термодинамические параметры, как температура и давление, сводятся к импульсноэнергетическим признакам молекул. Делает она это посредством задания некоторого вероятностного распределения. Прилагательное «статистическая» восходит к латинскому слову status (русское - состояние). Одного этого слова недостаточно для выражения специфики статистической физики. Действительно, любая физическая наука изучает состояния физических процессов и тел. Статистическая же физика имеет дело с ансамблем состояний. Ансамбль в рассматриваемом случае предполагает множество состояний, но не любых, а соотносящихся с одним и тем же совокупным состоянием, обладающим интегративными признаками. Таким образом, статистическая физика включает иерархию двух уровней, которые часто называют микроскопическим и макроскопическим. Соответственно в ней рассматривается соотношение микро- и макросостояний. Упомянутые выше интегративные признаки конституируются лишь в случае, если число микросостояний достаточно большое. Для конкретных состояний оно обладает нижней и верхней границей, определение которых является специальной задачей.

Как уже отмечалось, характерная черта статистического подхода состоит в необходимости обращения к понятию вероятности. С помощью функций распределения рассчитываются статистические средние значения (математические ожидания) тех или иных признаков, которые присущи, по определению, как микро-, так и макроуровню. Связь между двумя уровнями приобретает особенно отчетливый вид. Вероятностной мерой макросостояний оказывается энтропия (S ). Согласно формуле Больцмана, она прямо пропорциональна статистическому весу, т.е. числу способов осуществления данного макроскопического состояния (Р ):

Наибольшей же энтропия является в состоянии равновесия статистической системы.

Статистический проект был разработан в рамках классической физики. Казалось, что он неприменим в квантовой физике. В действительности же ситуация оказалась принципиально другой: в квантовой области статистическая физика не ограничивается классическими представлениями и приобретает более универсальный характер. Но само содержание статистического метода существенно уточняется.

Решающее значение для судеб статистического метода в квантовой физике имеет характер волновой функции. Она определяет не величины физических параметров, а вероятностный закон их распределения. Л это означает, что выполнено главное условие статистической физики, т.е. задание вероятностного распределения. Его наличие является необходимым и, видимо, достаточным условием успешного распространения статистического подхода на всю сферу квантовой физики.

В области классической физики казалось, что статистический подход не обязателен, а если он используется, то лишь в связи с временным отсутствием методов, по-настоящему адекватных природе физических процессов. Динамические законы, посредством которых осуществляется однозначная предсказуемость, актуальнее статистических закономерностей.

Будущая физика дескать позволит объяснить статистические законы при помощи динамических. Но развитие квантовой физики преподнесло ученым явный сюрприз.

В действительности выяснилось первенство не динамических, а статистических законов. Именно статистические закономерности позволили объяснить динамические законы. Так называемое однозначное описание является просто фиксацией событий, которые происходят с наибольшей вероятностью. Актуален не однозначный лапласовский, а вероятностный детерминизм (см. парадокс 4 из параграфа 2.8).

Квантовая физика по самому своему существу является статистической теорией. Это обстоятельство свидетельствует о непреходящем значении статистической физики. В классической физике статистический подход не требует решения уравнений движения. Поэтому создается впечатление, что он по существу своему является не динамическим, а феноменологическим. Теория отвечает на вопрос «Как происходят процессы?», но не на вопрос «Почему они происходят именно так, а не по-иному?». Квантовая физика придает статистическому подходу динамический характер, феноменология приобретает вторичный характер.

Статистическая термодинамика – раздел статистической физики, формулирующий законы, связывающие молекулярные свойства веществ с измеряемыми на опыте ТД величинами.

СТД посвящена обоснованию законов термодинамики равновесных систем и вычислению ТД функций по молекулярным постоянным. Основу СТД составляют гипотезы и постулаты.

В отличие от механики, в СТЛ рассматриваются средние значения координат и импульсов и вероятности появления их значений. Термодинамические свойства макроскопической системы рассматриваются как средние значения случайных величин или как характеристики плотности вероятности.

Различают классическую СТД (Максвелл, Больцман), квантовую (Ферми, Дирак, Бозе, Эйнштейн).

Основная гипотеза СТД: существует однозначная связь молекулярных свойств частиц, составляющих систему, и макроскопических свойств системы.

Ансамбль – большое, почти бесконечное число аналогичных ТД систем, находящихся в различных микросостояниях. У ансамбля с постоянной энергией все микросостояния равновероятны. Средние значения физически наблюдаемой величины за большой промежуток времени равно среднему значению по ансамблю.

§ 1. Микро- и макросостояния. Термодинамическая вероятность (статичтический вес) и энтропия. Формула Больцмана. Статистический характер второго закона ТД

Для описания макросостояния указывают небольшое число переменны (часто 2). Для описания микросостояния применяют описание конкретных частиц, для каждой из которых вводится шесть переменных.

Для графического изображения микросостояния удобно пользоваться фазовым пространством. Различают - фазовое пространство (молекулы) и Г-фазовое пространство (газ).

Для подсчёта числа микросостояний Больцман использовал метод ячеек, т.е. фазовый объём разбивается на ячейки, причем величина ячеек достаточно большая, чтобы поместилось несколько частиц, но маленькая по сравнению с целым объёмом.

Если полагать, что одна ячейка соответствует одному микросостоянию, то, если весь объём поделить на объём ячейки, получим число микросостояний.

Примем, что объём фазового пространства разбит на три ячейки. Общее число частиц в системе – девять. Пусть одно макросостояние: 7+1+1, второе: 5+2+2, третье: 3+3+3. Посчитаем число микросостояний, которыми может быть реализовано каждое макросостояние. Это число способов равно . В статистике Больцмана частицы считаются различимыми, т.е. обмен частиц между ячейками даёт новое микросостояние, но макросостояние остается тем же.

Наибольшее число микросостояний даёт система, в которой частицы равномерно распределены по всему объёму. Самое неустойчивое состояние соответствует накоплению частиц в одной части системы.


Посчитаем число микросостояний, когда число Авогадро распределено по двум ячейкам:

Применим формулу Стирлинга:

Если одна частица перескочит в чужую ячейку, получим отличие на .

Возьмем систему, в которой произошёл переход х частиц. Пусть мы хотим, чтобы . Расчет показывает, что х = 10 12 .

По мере перехода системы в равновесное состояние термодинамическая вероятность сильно растёт, энтропия тоже растёт. Следовательно,

Найдём вид этой функции, для этого возьмем систему из двух ячеек. В первом случае NA+0, во втором 0,5 + 0,5. Температура постоянна. Переход от первого состояния ко второму есть изотермическое расширение газа.

Согласно формуле Больцмана,

Так получается постоянная Больцмана. Теперь получим формулу Больцмана.

Возьмем две системы

Из двух систем образуем третью, тогда энтропия новой системы будет равняться:

Вероятность двух независимых систем перемножается:

Функция логарифмическая:

Но энтропия – величина размерная, нужен коэффициент пропорциональности. А это и есть константа Больцмана.

Вот здесь скользкий переход и вывод, что максимум энтропии в точке равновесия – закон не абсолютный, а статистический. Как видно, чем меньше частиц, тем реже выполняется второй закон термодинамики.

§ 2. Распределение молекул по энергии. Закон Больцмана

Система из Н частиц, . Как молекулы распрделены по энергии? Какое число молекул обладает энергией ?

Энтропия в состоянии равновесия имеет максимальное значение:

А теперь найдем что-то ещё:

Найдём дифференциалы:

В уравнении (2) не все количества независимы

Для того, чтобы избавиться от зависимых переменных, используем метод неопределенных множителей Лагранжа:

Подбираются так, чтобы коэффициенты при зависимых переменных были равны нулю.

Тогда остальные члены в сумме независимы. Окончательно получится, что

Потенцируем это уравнение:

Просуммируем:

Подставим в (3):

Избавимся от ещё одного множителя. Ур-е (6) логарифмируем, умножаем на и суммируем:

Неопределенный множитель Лагранжа стал определенным.

Окончательно, закон Больцмана запишется:

Подставим в (8) значение

Фактор Больцмана

Иногда распределение Больцмана записывают и так:

Соответственно, при температуре, близкой к абсолютному нулю, , т.е. нет молекул на возбужденных уровнях. При температуре, стремящейся к бесконечности, распределение по всем уровнями одинаково.

– сумма по состояниям


§ 3. Сумма по состояниям молекулы и её связь с термодинамическими свойствами

Выясним, какими свойствами обладает сумма по состояниям молекулы. Во-первых, это безразмерная величина, а её значение определяется температурой, количеством частиц и объёмом системы. Также она зависит от массы молекулы и её формы движения.

Далее, сумма по состояниям неабсолютная величина, она определена с точностью до постоянного множителя. Её величина зависит от уровня отсчёта энергии системы. Часто за этот уровень принимается температура абсолютного нуля и состояние молекулы с минимальными квантовыми числами.

Сумма по состояниям – монотонно увеличивающаяся функция температуры:

С ростом энергий сумма по состояниям увеличивается.

Сумма по состояниям молекулы обладает свойством мультипликативности. Энергию молекулы можно представить суммой поступательной и внутримолекулярной энергий. Тогда сумма по состояниям запишется так:

Можно ещё и так:

На возбуждение электронных уровней необходима высокая температура. При сравнительно невысоких температурах вклад электронных колебаний близок к нулю.

Нулевой уровень электронного состояния

Это вот всё называется приближением Борна – Оппенгеймера.

Предположим, что , тогда сумму можно заменить так:

Если остальные тоже между собой практически одинаковы, то:

Вырожденность уровней

Такая форма записи называется суммой по энергетическим уровням молекулы.

Сумма по состояниям связана с термодинамическими свойствами системы.

Возьмем производную по температуре:

Получили выражение для энтропии

Энергия Гельмгольца

Найдем давление:

Энтальпия и энергия Гиббса:

Осталась теплоемкость:

Во-первых, все величины – это приращение к нулевой энергии, во-вторых, все уравнения выполняются для систем, где частицы можно считать различимыми. В идеальном газе молекулы неразличимы.

§ 4. Каноническое распределение Гиббса

Гиббс предложил метод статистических, или термодинамических, ансамблей. Ансамбль – это большое, стремящееся к бесконечности, число аналогичных термодинамических систем, находящихся в различных микросостояниях. Микроканонический ансамбль характеризуется постонством . Канонический ансамбль имеет постоянные . Распределение Больцмана было выведено для микроканонического ансамбля, перейдём к каноническому.

Какова вероятность одного микросостояния в системе в термостате?

Гиббс ввёл понятие статистического ансамбля. Представим большой термостат, поместим в него ансамбль – одинаковые системы в различных микросостояниях. Пусть М – число систем в ансамбле. В состоянии i находятся систем.

В каноническом ансамбле, поскольку могут реализоваться состояния с различной энергией, следует ожидать, что вероятности будут зависеть от уровня энергии, которому они принадлежат.

Пусть имеется состояние, где энергия системы и её энтропия равны . Этой системе соответствует микросостояний.

Энергия Гельмгольца всего ансамбля постоянна.

Если внутреннюю энергию приравнять к энергии , то

Тогда вероятность одного состояния равна

Таким образом, вероятности, относящиеся к различным энергиям, зависят от энергии системы, а она может быть различной.

– каноническое распределение Гиббса

– вероятность макросостояния

вероятн.

§ 5. Сумма по состояниям системы и её связь с термодинамическими функциями

Сумма по состояниям системы

Функция состояния системы обладает свойством мультипликативности. Если энергию системы представить в виде:

Оказалось, что эта связь действует для системы локализованных частиц. Число микросостояний для нелокализованных частиц будет гораздо меньше. Тогда:

Пользуясь свойством мультипликативности, получим:

§ 6. Поступательная сумма по состояниям.
ТД свойства одноатомного идеального газа

Будем рассматривать одноатомный идеальный газ. Молекула считается точкой, которая обладает массой и способностью перемещаться в пространстве. Энергия такой частицы равна:

Такое движение имеет три степени свободы, поэтому представим эту энергию в виде трех составляющих. Рассмотрим движение вдоль координаты х .

Из квантовой механики:

Постулируется также.

Молекулярная физика,

Термодинамика,

Статистическая физика,


три положения
1. вещество состоит из частиц;
2.
3.

статистического метода усредненными

термодинамический метод

Начала термодинамики

Первое начало термодинамики

δQ = δA + dU , где dU Q и δA

Второе начало термодинамики

1 - Постулат Клаузиуса.

2 - Постулат Кельвина.

Приращение энтропии (

Нулевое начало термодинамики (общее начало термодинамики )

Если система A B C , то система A находится в равновесии с C

Элементы физической кинетики. Явление переноса в термодинамически неравновесных системах. Общее уравнение явлений переноса в газах и его обоснование согласно МКТ. Зависимость коэффициентов переноса от давления и температуры.

Физи́ческая кине́тика (др.-греч. κίνησις - движение) - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классическойстатистической физики

Изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей.

В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса , в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы ) и внутреннее трение (обусловлено переносом импульса).

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняетсязакону Фурье:

где j E -плотность теплового потока - величина, определяемая энергией, переносимой в форме теплоты оси х , l - теплопроводность , - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки j E и – противоположны).

2. Диффузия. Явление диффузии заключается в том, что происходит самопроиз­вольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически однородного газа подчиняется закону Фука :

где j m -плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку,перпендикулярную оси х, D - диффузия (коэффициент диффузии), dr/ dx - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки j m и dr/ dx противоположны).

3. Внутреннее трение (вязкость ). Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона :

где h - динамическая вязкость (вязкость), dv/ dx - градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S - площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда данное выражение можно представить в виде

где j p - плотность потока импульса - величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, - градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости.

Коэффициент диффузии растет с повышением температуры:

С повышением температуры, коэффициент теплопроводности тоже увеличивается:

Температурная зависимость коэффициента вязкости аналогична зависимости для коэффициента теплопроводности:

Первый закон (первое начало) термодинамики (закон сохранения энергии в тепловых процессах). Применение первого начала термодинамики к изопроцессам в газах. Адиабатический процесс. Уравнение Пуассона. Политропный процесс.

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии длятермодинамических систем

.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Иными словами, внутренняя энергия является функцией состояния . В циклическом процессе внутренняя энергия не изменяется.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Первое начало термодинамики:

§ при изобарном процессе

§ при изохорном процессе (A = 0)

§ при изотермическом процессе (ΔU = 0)

Здесь - масса газа, - молярная масса газа, - молярная теплоёмкость при постоянном объёме, - давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.

Твердое состояние вещества. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.Д. крупных частиц, взвешенных в газе или жидкости осуществляется благодаря их броуновскому движению. Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах.

Твердое тело. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Жидкость. Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.

Газ. Состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.

Плазма. Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая частьбарионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.

Явление поверхностного натяжения. Коэффициент поверхностного натяжения. Гидрофильные и гидрофобные поверхности. Условие рвновесия капли жидкости на поверхности твердого тела (принцип наименьшей энергии). Поверхностно-активные вещества (ПАВ) и их применение.

Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости

Коэффициент поверхностного натяжения - работа, необходимая для изотермического увеличения площади поверхности жидкости на 1 кв.м.

Коэффициент поверхностного натяжения:
- уменьшается с повышением температуры;
- равен нулю в критической точке;
- зависит от наличия примесей в жидкости.

Гидрофобность (от др.-греч. ὕδωρ - вода и φόβος - боязнь, страх) - это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Сама молекула в этом случае называется гидрофобной.

Гидрофильность (от др.-греч. ὕδωρ - вода и φιλία - любовь) - характеристика интенсивности молекулярного взаимодействия поверхности тел с водой. Наряду сгидрофобностью относится не только к телам, у которых оно является свойством поверхности.

Рассмотрим теперь явления, происходящие с каплей жидкости, помещенной на поверхность твердого тела. В этом случае имеются три границы раздела между фазами: газ-жидкость, жидкость-твердое тело и газ-твердое тело. Поведение капли жидкости будет определяться значениями поверхностного натяжения (удельными величинами свободной поверхностной энергии) на указанных границах раздела. Сила поверхностного натяжения на границе раздела жидкости и газа будет стремиться придать капле сферическую форму. Это произойдет в том случае, если поверхностное натяжение на границе раздела жидкости и твердого тела будет больше поверхностного натяжения на границе раздела газа и твердого тела. В этом случае процесс стягивания жидкой капли в сферу приводит к уменьшению площади поверхности границы раздела жидкость-твердое тело при одновременном увеличении площади поверхности границы раздела газ-жидкость. Тогда наблюдается несмачивание поверхности твердого тела жидкостью. Форма капли будет определяться равнодействующей сил поверхностного натяжения и силы тяжести. Если капля большая, то она будет растекаться по поверхности, а если маленькая - стремиться к шарообразной форме.

Пове́рхностно-акти́вные вещества́ (ПАВ ) - химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Области применения

Моющие средства. Основное применение ПАВ - в качестве активного компонента моющих и чистящих средств (в том числе, применяемых для дезактивации), мыла, для ухода за помещениями, посудой, одеждой, вещами, автомобилями и пр.

Косметика. Основное использование ПАВ в косметике - шампуни, где содержание ПАВ может достигать десятков процентов от общего объёма.

Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.

Кожевенная промышленность. Защита кожаных изделий от лёгких повреждений и слипания.

Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения, что обеспечивает лёгкое проникновение красочного материала в маленькие углубления на обрабатываемой поверхности и их заполнение с вытеснением при этом оттуда другого вещества (например, воды).

Бумажная промышленность. ПАВ используются для разделения чернил и варёной целлюлозы при переработке использованной бумаги.

Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение. Выдерживают высокие температуры, при которых сгорает масло.

Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. Используются для повышения эффективности транспортировки питательных компонентов к растениям через мембранные стенки.

Пищевая промышленность. ПАВ в виде эмульгаторов (например лецитина) добавляют для улучшения вкусовых качеств.

Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличения нефтеотдачи.

Строительство. ПАВ, называемые пластификаторами, добавляют к цементно-песчаным смесям и бетонам для уменьшения их водопотребности при сохранении подвижности. Это увеличивает конечную прочность (марку) затвердевшего материала, его плотность, морозостойкость, водонепроницаемость.

Медицина. Катионные и анионные ПАВ применяют в хирургии в качестве антисептиков.

Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром.

Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давленияплёнки . Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа :

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

R 1 = R 2 = R

Для случая поверхности кругового цилиндра радиуса R имеем

Обратите внимание, что Δp должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения МКТгазов. Термодинамический и статистический методы. Три начала термодинамики.

Молекулярная физика, раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения.

Термодинамика, наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями.

Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.

Молекулярно-кинетической теорией называется учение, которое объясняет строение и свойства тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела.
В основе МКТ строения вещества лежат три положения , каждое из которых доказано с помощью наблюдений и опытов (броуновское движение, диффузия и др.):
1. вещество состоит из частиц;
2. частицы хаотически движутся;
3. частицы взаимодействуют друг с другом.
Цель молекулярно-кинетической теории - объяснение свойств макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул.

Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах фундаментальных законах, установленных в результате обобщения опытных данных.

Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Первое начало термодинамики

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Второе начало термодинамики

Второй закон термодинамики исключает возможность создания вечного двигателя второго рода.

1 - Постулат Клаузиуса. Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

2 - Постулат Кельвина. Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара

Третье начало термодинамики может быть сформулировано так:

Приращение энтропии (как на меру беспорядка в системе) при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

Нулевое начало термодинамики (общее начало термодинамики )

Физический принцип, утверждающий, что вне зависимости от начального состояния изолированной системы в конце концов в ней установится термодинамическое равновесие, а также что все части системы при достижении термодинамического равновесия будут иметь одинаковую температуру. Тем самым нулевое начало фактически вводит и определяет понятие температуры. Нулевому началу можно придать чуть более строгую форму:

Если система A находится в термодинамическом равновесии с системой B , а та, в свою очередь, с системой C , то система A находится в равновесии с C . При этом их температуры равны.

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.


Close