В начале 1880-х годов Мечников в Мессине, Италия, отправив семью смотреть цирковое представление, спокойно рассматривал под микроскопом прозрачную личинку морской звезды. Он увидел, как подвижные клетки окружают инородную частицу, попавшую в тело личинки. Явление поглощения наблюдали и до Мечникова, но было принято считать, что это - просто подготовка к транспорту частиц кровью. Неожиданно у Мечникова возникло предположение: а что если это - механизм не транспорта, а защиты? Мечников тотчас же ввел в тело личинки кусочки шипов мандаринового дерева, которое он приготовил вместо новогодней елки для своих детей. Подвижные клетки вновь окружили чужеродные тела и поглотили их.

Если подвижные клетки личинки, думал он, защищают организм, они должны поглощать и бактерии. И это предположение подтвердилось. Мечников прежде не раз наблюдал, как белые клетки крови - лейкоциты, так же собираются вокруг проникшей в организм инородной частицы, формируя очаг воспаления. Кроме того, после многих лет работы в области сравнительной эмбриологии он знал, что эти подвижные клетки в теле личинки и лейкоциты человека происходят из одного зародышевого листка - мезодермы. Получалось, что у всех организмов обладающих кровью или ее предшественником - гемолимфой, есть единый механизм зашиты - поглощение инородных частиц клетками крови. Так был открыт фундаментальный механизм, с помощью которого организм защищает себя от проникновения в него чужеродных веществ и микробов. По предложению профессора Клауса из Вены, которому Мечников рассказал о своем открытии, клетки-защитники были названы фагоцитами, а само явление - фагоцитозом. Механизм фагоцитоза был подтвержден в организме человека и высших животных. Лейкоциты человека окружают проникшие в организм микробы и, подобно амебам, образуют выпячивания, охватывают со всех сторон инородную частицу и переваривают ее.

Пауль Эрлих

Ярким представителем немецкой школы микробиологов был Пауль Эрлих (1854-1915). С 1891 Эрлих занимался поисками химических соединений, способных подавлять жизнидеятельность возбудителей заболеваний. Ввел в практику лечение четырехдневной малярии красителем метиленовым синим, лечение сифилиса мышьяком.



Начав с работы с дифтерийным токсином в Институте инфекционных болезней. Эрлих создал теорию гуморального иммунитета (по его терминологии - теорию боковых цепей). Согласно ей, микробы или токсины содержат в себе структурные единицы - антигены, которые вызывают в организме образование аптител - особых белков класса глобулинов. Антитела обладают стереоспецифичностью, то есть конформацией, позволяющей им связывать только те антигены, в ответ на проникновение которых они возникли. Так Эрлих подчинил взаимодействие аптиген-антитело законам стереохимии. Вначале антитела существуют в виде особых химических групп (боковых цепей) на поверхности клеток (фиксированные рецепторы), затем часть их отделяется от поверхности клетки и начинает циркулировать с кровью (свободно перерешающиеся рецепторы). Встречаясь с микробами или токсинами, антитела связываются с ними, обездвиживают их и предупреждают их действие на организм. Эрлих показал, что отравляющее действие токсина и его способность связываться с антитоксином - это разные функции и на них можно воздействовать раздельно. Повысить концентрацию антител можно было повторными введениями антигена - так Эрлих решил беспокоившую Беринга проблему получения высокоэффективных сывороток. Эрлих ввел различие между пассивным иммунитетом (введение готовых антител) и активным иммунитетом (введение антигенов для стимуляции собственного антителообразования). Исследуя растительный яд рицин, Эрлих показал, что антитела появляются не сразу после введения в кровь антигена. Он первым изучал передачу части иммунных свойств от матери к плоду через плаценту и к младенцу - с молоком.

Между Мечниковым и Эрлихом возникла долгая и упорная дискуссия в печати об «истинной теории иммунитета». В итоге фагоцитоз получил название клеточного, а антителообразование - гуморального иммунитета. Мечников и Эрлих разделили в 1908 году Нобелевскую премию.

Беринг занимался созданием сывороток путем подбора бактериальных культур и токсинов, которые он впрыскивал животным. Одним из крупнейших его достижений является создание в 1890 г. противостолбнячной сыворотки, которая оказалась очень эффективной при профилактике столбняка при ранениях, хотя и малоэффективной в более поздний период, при уже развившейся болезни.

«Беринг хотел, чтобы честь открытия противодифтерийной сыворотки принадлежала германским, а не французским ученым. В поисках прививки зараженным дифтерией животным Беринг делал сыворотки из разных веществ, но животные погибали. Однажды для прививки он использовал трихлорид йода. Правда, и на этот раз морские свинки тяжело заболели, но ни одна из них не погибла. Воодушевленный первой удачей, Беринг, дождавшись выздоровления подопытных свинок, сделал им прививку из отцеженного по способу Ру бульона с дифтерийным токсином, в котором ранее выращивались дифтерийные палочки. Животные превосходно выдержали прививку, несмотря на то, что получили огромную дозу токсина. Значит, они приобрели иммунитет против дифтерии, им не страшны ни бактерии, ни выделяемый ими яд. Беринг решил усовершенствовать свой метод. Он смешал кровь выздоровевших морских свинок с отцеженной жидкостью, содержащей дифтерийный токсин, и сделал инъекцию этой смеси здоровым морским свинкам - ни одна из них не заболела. Значит, решил Беринг, сыворотка крови животных, приобретших иммунитет, содержит в себе противоядие от дифтерийного яда, какой-то „антитоксин“.

Делая прививки сыворотки, полученной от переболевших животных, здоровым, Беринг убедился, что морские свинки получают иммунитет не только при заражении бактериями, но и при действии на них токсина. Позже он убедился, что эта сыворотка дает также лечебный эффект, то есть, если сделать прививку больным животным, те выздоравливают. В клинике детских болезней в Берлине, 26 декабря 1891 года, ребенку, умиравшему от дифтерии, сделали прививку из сыворотки переболевшей свинки, и ребенок выздоровел. Эмиль Беринг и его шеф - Роберт Кох одержали триумфальную победу над грозной болезнью. Теперь за дело вторично взялся Эмиль Ру. Делая прививки дифтерийного токсина лошадям в коротких интервалах времени, он постепенно добивался полной иммунизации животных. Потом он брал у лошадей по несколько литров крови, выделял из нее сыворотку, из которой стал делать прививки больным детям. Уже первые результаты превзошли все ожидания: смертность, достигавшая прежде при дифтерии от 60 до 70 %, упала до 1–2 %.

В 1901 году Беринг получил Нобелевскую премию по физиологии и медицине – за работу по сывороточной терапии.

Термин "иммунитет" возник от латинского слова "immunitas" - освобождение, избавление от чего-либо. В медицинскую практику он вошел в XIX веке, когда им стали обозначать "освобождение от болезни" (французский словарь Литте, 1869). Но еще задолго до появления термина у медиков существовало понятие об иммунитете в значении невосприимчивости человека к болезни, которое обозначалось как "самоисцеляющая сила организма" (Гиппократ), "жизненная сила" (Гален) или "залечивающая сила" (Парацельс). Врачам давно была известна присущая людям от рождения невосприимчивость (резистентность) к болезням животных (например, куриной холере, чуме собак). Сейчас это называют врожденным (естественным) иммунитетом. С древних времен медики знали, что человек не болеет некоторыми болезнями дважды. Так, еще в IV веке до н.э. Фукидид, описывая чуму в Афинах, отмечал факты, когда люди, которые чудом выживали, могли ухаживать за больными без риска заболеть вновь. Жизненный опыт показывал, что у людей может возникать стойкая невосприимчивость к повторному заражению после перенесённых тяжёлых инфекций, таких, например, как тиф, оспа, скарлатина. Такое явление называют приобретенным иммунитетом.

Имеются свидетельства тому, что первые прививки оспы проводили в Китае за тысячу лет до Рождества Христова. Болячками переболевшего оспой человека расцарапывали кожу здорового человека, который обычно после этого переносил инфекцию в слабой форме, после чего выздоравливал и оставался устойчивым к последующим заражениям оспой. Инокуляция содержимого оспенных пустул здоровым людям с целью их защиты от острой формы заболевания распространилась затем в Индию, Малую Азию, Европу, на Кавказ. Однако прием искусственного заражения натуральной (человеческой) оспой не во всех случаях давал положительные результаты. Иногда после инокуляции отмечалась острая форма заболевания, и даже смерть.

На смену инокуляции пришел метод вакцинации (от лат. vacca – корова), разработанный в конце XVIII в. английским врачом Э.Дженнером (E.Jenner). Он обратил внимание на тот факт, что молочницы, ухаживавшие за больными животными, иногда заболевали в крайне слабой форме оспой коров, но при этом никогда не болели натуральной оспой. Подобное наблюдение давало в руки исследователя реальную возможность борьбы с болезнью людей. В 1796 г., через 30 лет после начала своих изысканий, Э.Дженнер решился апробировать метод вакцинации на мальчике, которого привил коровьей оспой, а затем заразил его натуральной оспой. Эксперимент прошел успешно, и с тех пор способ вакцинации по Э.Дженнеру нашел широкое применение во всем мире.

Необходимо отметить, что задолго до Э. Дженнера выдающийся ученый-врач Средневекового Востока Рази, путем прививки детям коровьей оспы, предохранял их от заболевания оспой человека. Э. Дженнер не знал о методе Рази.

Спустя 100 лет открытый Э. Дженнером факт лег в основу экспериментов Л. Пастера на куриной холере, завершившихся формулировкой принципа профилактики инфекционных заболеваний – принцип иммунизации ослабленными или убитыми возбудителями (1881 г.).

Рождение инфекционной иммунологии связывают с именем выдающегося французского ученого Луи Пастера (Louis Paster). Первый шаг к целенаправленному поиску вакцинных препаратов, создающих устойчивый иммунитет к инфекции, был сделан после хорошо известного наблюдения Пастера над патогенностью возбудителя куриной холеры. Было показано, что заражение кур ослабленной (аттенуированной) культурой возбудителя создает невосприимчивость к патогенному микробу (1880г). В 1881г. Пастер продемонстрировал эффективный подход к иммунизации коров против сибирской язвы, а в 1885г. ему удалось показать возможность защиты людей от бешенства.

К 40-50-м годам нашего столетия принципы вакцинации, заложенные Пастером, нашли свое проявление в создании целого арсенала вакцин против самого широкого набора инфекционных заболеваний.

Хотя Пастер считается основателем инфекционной иммунологии, он ничего не знал о факторах, включенных в процесс защиты от инфекции. Первыми, кто пролил свет на один из механизмов невосприимчивости к инфекции, были Беринг (Behring) и Китазато (Kitasato). В 1890 году Эмиль фон Беринг сообщил, что после введения в организм животного не целых дифтерийных бактерий, а всего лишь некого токсина, выделенного из них, в крови появляется нечто, способное нейтрализовать или разрушать токсин и предотвращать заболевание, вызываемое целой бактерией. Более того, оказалось, что приготовленные из крови таких животных препараты (сыворотки) исцеляли детей, уже больных дифтерией. Вещество, которое нейтрализовало токсин и появлялось в крови только в его присутствии, получило название антитоксина. В дальнейшем подобные ему вещества стали называть общим термином - антитела. А тот агент, который вызывает образование этих антител, стали называть антигеном. За эти работы Эмиль фон Беринг был удостоен в 1901 году Нобелевской премии по физиологии и медицине.

В дальнейшем П. Эрлих разработал на этой базе теорию гуморального иммунитета, т.е. иммунитета, обеспечиваемого антителами, которые, продвигаясь по жидким внутренним средам организма, таким, как кровь и лимфа (от лат. humor - жидкость), поражают чужеродные тела на любом расстоянии от лимфоцита, который их производит.

Арне Тизелиус (Нобелевская премия по химии за 1948 год) показал, что антитела - это всего лишь обычные белки, но с очень большим молекулярным весом. Химическую структуру антител расшифровали Джералд Морис Эдельман (США) и Родни Роберт Портер (Великобритания), за что получили Нобелевскую премию в 1972 году. Было установлено, что каждое антитело состоит из четырех белков - 2-х легких и 2-х тяжелых цепей. Такая структура в электронном микроскопе по своему виду напоминает "рогатку". Часть молекулы антитела, которая связывается с антигеном, очень изменчива, поэтому ее называют вариабельной. Эта область содержится на самом кончике антитела, поэтому защитную молекулу иногда сравнивают с пинцетом, ухватывающим с помощью острых концов мельчайшие детали самого замысловатого часового механизма. Активный центр распознает в молекуле антигена небольшие участки, состоящие обычно из 4-8 аминокислот. Эти участки антигена подходят к структуре антитела "как ключ к замку". Если антитела не могут справиться с антигеном (микробом) самостоятельно, на помощь им придут другие компоненты и, в первую очередь, специальные "клетки-пожиратели".

Позднее японец Сусумо Тонегава, основываясь на достижении Эдельмана и Портера, показал то, что никто в принципе не мог даже ожидать: те гены в геноме, которые отвечают за синтез антител, в отличие от всех других генов человека, обладают потрясающей способностью - многократно изменять свою структуру в отдельных клетках человека в течение его жизни. При этом они, варьируя в своей структуре, перераспределяются так, что потенциально готовы обеспечить производство нескольких сотен миллионов различных белков-антител, т.е. намного больше теоретического количества, потенциально действующих на человеческий организм извне чужеродных веществ - антигенов. В 1987 году С. Тонегава была присуждена Нобелевская премия по физиологии и медицине "за открытие генетических принципов генерации антител".

Наш соотечественник И.И. Мечников разработал теорию фагоцитоза и обосновал фагоцитарную теорию иммунитета. Он доказал, что у животных и человека существуют специальные клетки – фагоциты – способные поглощать и разрушать патогенные микроорганизмы и другой генетически чужеродный материал, оказавшийся в нашем организме. Фагоцитоз был известен ученым c 1862 г. по работам Э. Геккеля, но только Мечников первым связал фагоцитоз с защитной функцией иммунной системы. В последующей многолетней дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета.

Параллельно с Мечниковым разрабатывал свою теорию иммунной защиты от инфекции немецкий фармаколог Пауль Эрлих. Он знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы им " антителами ". Самое характерное свойство антител - это их ярко выраженная специфичность. Образовавшись как защитное средство против одного микроорганизма, они нейтрализуют и разрушают только его, оставаясь безразличными к другим. Пытаясь понять это явление специфичности, Эрлих выдвинул теорию "боковых цепей", по которой антитела в виде рецепторов предсуществуют на поверхности клеток. При этом антиген микроорганизмов выступает в качестве селективного фактора. Вступив в контакт со специфическим рецептором, он обеспечивает усиленную продукцию и выход в циркуляцию только этого конкретного рецептора (антитела).

Прозорливость Эрлиха поражает, поскольку с некоторыми изменениями эта в целом умозрительная теория подтвердилась в настоящее время.

Фагоцитоз, открытый Мечниковым, получил в дальнейшем название клеточного иммунитета, а антителообразование, обнаруженное Эрлихом, – гуморального иммунитета. Две теории – клеточная (фагоцитарная) и гуморальная – в период своего возникновения стояли на антагонистических позициях. Школы Мечникова и Эрлиха боролись за научную истину, не подозревая, что каждый удар и каждое его парирование сближало противников. В 1908г. обоим ученым одновременно была присуждена Нобелевская премия.

Новый этап развития иммунологии связан в первую очередь с именем выдающегося австралийского ученого М.Бернета (Macfarlane Burnet; 1899- 1985). Именно он в значительной степени определил лицо современной иммунологии. Рассматривая иммунитет как реакцию, направленную на дифференциацию всего "своего" от всего "чужого", он поднял вопрос о значении иммунных механизмов в поддержании генетической целостности организма в период индивидуального (онтогенетического) развития. Именно Бернет обратил внимание на лимфоцит, как на основного участника специфического иммунного реагирования, дав ему название " иммуноцит ". Именно Бернет предсказал, а англичанин Питер Медавар и чех Милан Гашек экспериментально подтвердили состояние, противоположное иммунной реактивности – толерантности. Именно Бернет указал на особую роль тимуса в формировании иммунного ответа. И наконец, Бернет остался в истории иммунологии как создатель клонально-селекционной теории иммунитета. Формула такой теории проста: один клон лимфоцитов способен реагировать только на одну конкретную антигенную специфическую детерминанту.

Особого внимания заслуживают взгляды Бернета на иммунитет как на такую реакцию организма, которая отличает все "свое" от всего "чужого". После доказательств Питером Медаваром иммунной природы отторжения чужеродного трансплантата и накопления фактов по иммунологии злокачественных новообразований стало очевидным, что иммунная реакция развивается не только на микробные антигены, но и тогда, когда имеются любые, пусть незначительные антигенные различия между организмом и тем биологическим материалом (трансплантатом, злокачественной опухолью), с которым встречается организм.

Строго говоря, ученые прошлого, включая Мечникова, понимали, что предназначение иммунитета – не только борьба с инфекционными агентами. Однако интересы иммунологов первой половины нашего столетия концентрировались в основном на разработке проблем инфекционной патологии. Необходимо было время, чтобы естественный ход научного познания позволил выдвинуть концепцию роли иммунитета в индивидуальном развитии. И автором нового обобщения был Бернет.

Большой вклад в становление современной иммунологии внесли также Роберт Кох (Robert Koch; 1843-1910), открывший возбудитель туберкулеза и описавший кожную туберкулиновую реакцию; Жюль Борде (Jules Bordet; 1870-1961), сделавший важный вклад в понимание комплемент -зависимого лизиса бактерий; Карл Ландштейнер (Karl Landsteiner; 1868-1943), получивший Нобелевскую премию за открытие групп крови и разработавший подходы к изучению тонкой специфичности антител с помощью гаптенов; Родни Портер (Rodney Porter; 1917-1985) и Джеральд Эдельман (Gerald Edelman; 1929), изучившие структуру антител; Джордж Снелл (George Snell), Барух Венацерраф (Baruj Benacerraf) и Жан Доссе (Jean Dausset), описавшие главный комплекс гистосовместимости у животных и человека и открывшие гены иммунного ответа. Среди отечественных иммунологов особенно значительны исследования Н.Ф.Гамалея, Г.Н.Габричевского, Л.А.Тарасевича, Л.А.Зильбера, Г.И.Абелева.

Иммунитет - система защиты организма от внешних воздействий. Сам термин произошел от латинского слова, переводящегося как «освобождение» или «избавление от чего-либо». Гиппократ называл его «самоисцеляющая сила организма», а Парацельс именовал «залечивающей энергией». Прежде всего следует разобраться в терминах, связанных с главными защитниками нашего организма.

Естественный и приобретенный иммунитет

Еще в давние времена врачам была известна невосприимчивость человека к заболеваниям животных. Например, чума у собак или куриная холера. Это называется врожденным иммунитетом. Он дается человеку с рождения и не исчезает на протяжении всей жизни.

Второй появляется у человека только после того, как он перенесет болезнь. Например, тиф и скарлатина - первые инфекции, к которым врачи открыли устойчивость. В процессе заболевания организм создает антитела, которые защищают его от определенных микробов и вирусов.

Огромное значение иммунитета в том, что после излечения организм уже готов встретить повторное заражение. Этому способствует:

  • сохранение модели антител на всю жизнь;
  • распознавание организмом "знакомой" болезни и быстрая организация обороны.

Существует более мягкий способ приобрести иммунитет - это прививка. Нет необходимости в полной мере переживать заболевание. Достаточно ввести в кровь ослабленную болезнь, чтобы «научить» организм с ней бороться. Если вы хотите узнать, что дало человечеству открытие иммунитета, следует для начала узнать хронологию открытий.

Немного истории

Первая прививка была сделана в 1796 году. Эдвард Дженер был убежден, что искусственное заражение оспой от крови коровы - лучший вариант для приобретения иммунитета. А в Индии и Китае заражали человека оспой еще задолго до того, как это стали делать в Европе.

Препараты, изготовленные из крови таких животных, стали называться сыворотками. Они стали первым средством от болезней, что дало человечеству открытие иммунитета.

Сыворотка как последний шанс

Если человек заболел и не может справиться с недугом самостоятельно, ему вводят сыворотку. В ней содержатся уже готовые антитела, которые организм больного по каким-либо причинам не может выработать самостоятельно.

Это крайние меры, они необходимо только в том случае, если жизнь пациента находится в опасности. Антитела для сыворотки добываются из крови животных, у которых уже есть иммунитет к данному заболеванию. Получают они его после вакцинации.

Самое главное, что дало человечеству открытие иммунитета, - это понимание работы организма в целом. Ученые наконец-то поняли, как появляются антитела и для чего они нужны.

Антитела - борцы с опасными токсинами

Антитоксином стали называть вещество, нейтрализующее продукты жизнедеятельности бактерий. Оно появлялось в крови только в случае, попадания этих опасных соединений. Потом все подобные вещества стали называть обобщающим термином - "антитела".

Лауреат Арне Тизелиус экспериментально доказал, что антитела - это обычные белки, только имеющие большую А двое других ученых - Эдельман и Портер - расшифровали структуру нескольких из них. Оказалось, что антитело состоит из четырех белков: двух тяжелых и двух легких. Сама молекула по форме напоминает рогатку.

А позже Сусумо Тонегава показал удивительную способность нашего генома. Участки ДНК, которые отвечают за синтез антител, способны изменяться в каждой клетке тела. И они всегда наготове, при любой опасности они могут измениться так, что клетка станет вырабатывать защитные белки. То есть организм всегда готов произвести на свет множество самых различных антител. Это разнообразие с лихвой перекрывает число возможных чужеродных воздействий.

Значение открытия иммунитета

Само открытие иммунитета и все выдвинутые теории о его действии позволили ученым и врачам лучше понять устройство нашего организма, механизмы его реакций на вирусы и Это помогло победить такую страшную болезнь, как оспа. А затем были найдены вакцины от столбняка, кори, туберкулеза, коклюша и многих других.

Все эти достижения в медицине позволили намного увеличить среднюю человека и улучшить качество медицинского обслуживания.

Для того чтобы лучше понять, что дало человечеству открытие иммунитета, достаточно почитать о жизни в средневековье, когда не было прививок и сывороток. Посмотрите, как разительно изменилась медицина, и насколько лучше и безопасней стало жить!

Член-корреспондент РАН Сергей Недоспасов, Борис Руденко, обозреватель журнала «Наука и жизнь».

Революционные прорывы в любой области науки происходят нечасто, раз-два в столетие. Да и для того, чтобы осознать, что революция в познании окружающего мира действительно произошла, оценить её результаты, научному сообществу и обществу в целом порой требуется не один год и даже не одно десятилетие. В иммунологии такая революция случилась в конце прошедшего века. Готовили её десятки выдающихся учёных, выдвигавших гипотезы, совершавших открытия и формулирующих теории, причём некоторые из этих теорий и открытий были сделаны сто лет назад.

Пауль Эрлих (1854-1915).

Илья Мечников (1845-1916).

Чарльз Джэнуэй (1943-2003).

Жюль Хоффманн.

Руслан Меджитов.

Дрозофила, мутантная по гену Toll, заросла грибками и погибла, так как у неё нет иммунных рецепторов, распознающих грибковые инфекции.

Две школы, две теории

Весь ХХ век, вплоть до начала 1990-х, в исследованиях иммунитета учёные исходили из убеждения, что самой совершенной иммунной системой обладают высшие позвоночные, и в частности человек. Вот её-то и следует изучать в первую очередь. И если что-то пока ещё «недооткрыли» в иммунологии птиц, рыб и насекомых, то для продвижения на пути познания механизмов защиты от людских болезней особой роли это, скорее всего, не играет.

Иммунология как наука возникла полтора столетия назад. Хотя первую вакцинацию связывают с именем Дженнера, отцом-основателем иммунологии по праву считается великий Луи Пастер, начавший искать разгадку выживания рода человеческого, несмотря на регулярные опустошительные эпидемии чумы, чёрной оспы, холеры, обрушивающиеся на страны и континенты словно карающий меч судьбы. Миллионы, десятки миллионов погибших. Но в городах и селениях, где похоронные команды не успевали убирать с улиц трупы, находились такие, кто самостоятельно, без помощи знахарей и колдунов справлялся со смертельной напастью. А также те, кого болезнь не коснулась совершенно. Значит, существует в организме человека механизм, защищающий его хотя бы от некоторых вторжений извне. Он и называется иммунитетом.

Пастер развивал представления об искусственном иммунитете, разрабатывая методики его создания посредством вакцинации, однако постепенно стало ясно, что иммунитет существует в двух ипостасях: естественный (врождённый) и адаптивный (приобретённый). Который же из них важнее? Какой из них играет роль при успешной вакцинации? В начале ХХ столетия в ответе на этот принципиальный вопрос столкнулись в острой научной полемике две теории, две школы - Пауля Эрлиха и Ильи Мечникова.

Пауль Эрлих ни в Харькове, ни в Одессе не бывал. Свои университеты проходил в Бреславле (Бреслау, ныне Вроцлав) и Страсбурге, трудился в Берлине, в институте Коха, где создал первую в мире серологическую контрольную станцию, а потом возглавил институт экспериментальной терапии во Франкфурте-на-Майне, носящий сегодня его имя. И тут следует признать, что в концептуальном плане Эрлих сделал для иммунологии за всю историю существования этой науки более, чем кто-либо ещё.

Мечников открыл явление фагоцитоза - захвата и уничтожения специальными клетками - макрофагами и нейтрофилами - микробов и других чужеродных организму биологических частиц. Именно этот механизм, полагал он, и является основным в иммунной системе, выстраивая линии защиты от вторжения патогенов. Именно фагоциты бросаются в атаку, вызывая реакцию воспаления, к примеру при уколе, занозе и т.д.

Эрлих доказывал противоположное. Главная роль в защите от инфекций принадлежит не клеткам, а открытым им антителам - специфическим молекулам, которые образуются в сыворотке крови в ответ на внедрение агрессора. Теория Эрлиха получила название теории гуморального иммунитета.

Интересно, что непримиримые научные соперники - Мечников и Эрлих - разделили в 1908 году Нобелевскую премию по физиологии и медицине за работы в области иммунологии, хотя к этому времени теоретические и практические успехи Эрлиха и его последователей, казалось бы, полностью опровергали воззрения Мечникова. Даже поговаривали, что премия последнему была присуждена, скорее, по совокупности заслуг (что вовсе не исключено и не зазорно: иммунология - лишь одна из областей, в которых работал русский учёный, вклад его в мировую науку огромен). Впрочем, даже если и так, члены Нобелевского комитета, как оказалось, были намного более правы, чем полагали сами, хотя подтверждение тому пришло только через столетие.

Эрлих умер в 1915 году, Мечников пережил своего оппонента всего на год, так что принципиальнейший научный спор вплоть до конца столетия развивался уже без участия его инициаторов. А пока всё, что происходило в иммунологии в течение следующих десятилетий, подтверждало правоту Пауля Эрлиха. Было установлено, что белые кровяные тельца, лимфоциты, делятся на два вида: В и Т (тут надо подчеркнуть, что открытие Т-лимфоцитов в середине ХХ века перенесло науку о приобретённом иммунитете на совершенно другой уровень - основоположники этого не могли предвидеть). Именно они организуют защиту от вирусов, микробов, грибков и вообще от враждебных организму субстанций. В-лимфоциты продуцируют антитела, которые связывают чужеродный белок, нейтрализуя его активность. А Т-лимфоциты уничтожают заражённые клетки и способствуют удалению возбудителя из организма другими путями, причём в обоих случаях образуется «память» о патогене, так что с повторной инфекцией организму бороться уже намного проще. Эти защитные линии способны точно так же расправиться и с собственным, но перерождённым белком, который становится опасен для организма. К сожалению, такая способность в случае сбоя в настройке сложнейшего механизма адаптивного иммунитета может стать причиной аутоиммунных заболеваний, когда лимфоциты, потеряв способность отличать свои белки от чужих, начинают «стрелять по своим»…

Таким образом, до 80-х годов ХХ столетия иммунология в основном развивалась по пути, указанному Эрлихом, а не Мечниковым. Невероятно сложный, фантастически изощрённый миллионами лет эволюции адаптивный иммунитет постепенно раскрывал свои загадки. Учёные создавали вакцины и сыворотки, которые должны были помочь организму как можно быстрее и эффективнее организовать иммунный ответ на заражение, и получали антибиотики, способные подавить биологическую активность агрессора, облегчив тем самым работу лимфоцитов. Правда, поскольку многие микроорганизмы находятся в симбиозе с хозяином, антибиотики с неменьшим энтузиазмом обрушиваются и на своих союзников, ослабляя и даже сводя на нет их полезные функции, но медицина заметила это и забила тревогу много, много позднее…

Однако рубежи полной победы над болезнями, поначалу казавшиеся такими достижимыми, отодвигались всё дальше к горизонту, потому что с течением времени появлялись и накапливались вопросы, на которые господствующая теория отвечать затруднялась или не могла ответить вовсе. Да и создание вакцин шло вовсе не так гладко, как предполагалось.

Известно, что 98% живущих на Земле существ вообще лишено адаптивного иммунитета (в эволюции он появляется лишь с уровня челюстных рыб). А ведь у всех у них тоже есть свои враги в биологическом микромире, свои болезни и даже эпидемии, с которыми, однако, популяции справляются вполне успешно. Известно также, что в составе микрофлоры человека есть масса организмов, которые, казалось бы, просто обязаны вызывать заболевания и инициировать иммунный ответ. Тем не менее этого не происходит.

Подобных вопросов десятки. Десятилетиями они оставались открытыми.

Как начинаются революции

В 1989 году американский иммунолог профессор Чарльз Джэнуэй (Charles Janeway) опубликовал работу, которая очень скоро была признана провидческой, хотя, как и у теории Мечникова, у неё были и остаются серьёзные, эрудированные противники. Джэнуэй предположил, что на клетках человека, отвечающих за иммунитет, существуют специальные рецепторы, распознающие какие-то структурные компоненты патогенов (бактерий, вирусов, грибков) и запускающие механизм ответной реакции. Поскольку потенциальных возбудителей заболеваний в подлунном мире насчитывается неисчислимое множество, Джэнуэй предположил, что и рецепторы будут распознавать какие-то «инвариантные» химические структуры, характерные для целого класса патогенов. Иначе просто не хватит генов!

Спустя несколько лет профессор Жюль Хоффманн (впоследствии ставший президентом Французской академии наук) обнаружил, что мушка-дрозофила - почти непременный участник важнейших открытий в генетике - обладает защитной системой, до того момента недопонятой и неоценённой. Оказалось, что у этой плодовой мушки есть специальный ген, который не только важен для развития личинки, но и связан с врождённым иммунитетом. Если в мушке этот ген испортить, то при заражении грибками она погибает. Причём от других болезней, например бактериального характера, не погибнет, а от грибковой - неизбежно. Открытие позволяло сделать три важнейших вывода. Во-первых, примитивная мушка-дрозофила наделена мощным и эффективным врождённым иммунитетом. Во-вторых, её клетки обладают рецепторами, распознающими инфекции. В-третьих, рецептор специфичен к определённому классу инфекций, то есть способен распознавать не любую чужеродную «структуру», а только вполне определённую. А от другой «структуры» данный рецептор не защищает.

Вот эти два события - почти умозрительную теорию и первый неожиданный экспериментальный результат - и следует считать началом великой иммунологической революции. Дальше, как и бывает в науке, события развивались по нарастающей. Руслан Меджитов, который окончил Ташкентский университет, потом аспирантуру в МГУ, а впоследствии стал профессором Йельского университета (США) и восходящей звездой мировой иммунологии, первым обнаружил эти рецепторы на клетках человека.

Так, спустя почти сто лет, окончательно решился давний теоретический спор великих научных соперников. Решился тем, что оба были правы - их теории дополняли друг друга, причём теория И. И. Мечникова получила новое экспериментальное подтверждение.

А фактически произошла концептуальная революция. Оказалось, что для всех сущих на Земле врождённый иммунитет - главный. И только у наиболее «продвинутых» по лестнице эволюции организмов - высших позвоночных в дополнение возникает иммунитет приобретённый. Однако именно врождённый руководит его запуском и последующей работой, хотя многие детали того, как всё это регулируется, ещё предстоит установить.

«Адъювант его превосходительства»

Новые взгляды на взаимодействие врождённой и приобретённой ветвей иммунитета помогли разобраться в том, что до сей поры было непонятно.

Как действуют вакцины в тех случаях, когда они работают? В общем (и весьма упрощённом) виде это происходит примерно так. Ослабленный возбудитель болезни (как правило, вирус или бактерия) вводится в кровь животного-донора, например лошади, коровы, кролика и т.д. Иммунная система животного продуцирует защитный ответ. Если защитный ответ связан с гуморальными факторами - антителами, то его материальные носители можно очистить и перенести в кровь человека, одновременно перенося и защитный механизм. В других случаях ослабленным (или убитым) патогеном заражают или иммунизуют самого человека, надеясь вызвать иммунную реакцию, которая сможет защитить от реального возбудителя болезни и даже закрепиться в клеточной памяти на долгие годы. Именно так Эдвард Дженнер в конце XVIII века впервые в истории медицины провёл вакцинацию против оспы.

Однако такая методика срабатывает далеко не всегда. Не случайно до сих пор нет вакцин против СПИДа, туберкулёза и малярии - трёх наиболее опасных заболеваний в мировом масштабе. Более того, на многие простые химические соединения или белки, которые являются чужеродными для организма и просто обязаны были бы инициировать ответ иммунной системы, - ответ не возникает! И часто происходит это по той причине, что механизм основного защитника - врождённого иммунитета - остаётся неразбуженным.

Один из способов преодолеть это препятствие экспериментально продемонстрировал американский патолог Дж. Фрейнд (J. Freund). Иммунная система заработает в полную силу, если враждебный антиген смешать с адъювантом. Адъювант - своего рода посредник, помощник при иммунизации, в опытах Фрейнда он состоял из двух компонентов. Первый - водо-масляная суспензия - выполнял чисто механическую задачу медленного высвобождения антигена. А второй компонент - на первый взгляд достаточно парадоксальный: высушенные и хорошо растолчённые бактерии туберкулёза (палочки Коха). Бактерии мертвы, они не способны вызвать заражение, но рецепторы врождённого иммунитета их всё равно немедленно распознáют и включат защитные механизмы на полную мощность. Вот тогда и запускается процесс активации адаптивного иммунного ответа на антиген, который был подмешан к адъюванту.

Открытие Фрейнда было чисто экспериментальным и поэтому может показаться частным. Но Джэнуэй уловил в нём момент общей значимости. Более того, он даже называл неспособность индуцировать полноценный иммунный ответ на чужеродный белок у экспериментальных животных или у человека «маленьким грязным секретом иммунологов» (намекая на то, что это удаётся сделать только в присутствии адъюванта, а как работает адъювант, никто не понимает).

Джэнуэй и предположил, что система врождённого иммунитета распознаёт бактерии (как живые, так и убитые) по компонентам клеточных стенок. Бактериям, которые живут «сами по себе», нужны для внешней защиты прочные многослойные клеточные оболочки. Нашим же клеткам, под мощным чехлом внешних защитных тканей, такие оболочки не нужны. И синтезируются бактериальные оболочки с помощью ферментов, каких у нас нет, и поэтому компоненты бактериальных стенок - это как раз те химические структуры, идеальные сигнализаторы угрозы инфекции, на которые организм в процессе эволюции изготовил рецепторы-опознаватели.

Небольшое отступление в контексте основной темы.

Жил датский учёный-бактериолог Христиан Иоахим Грам (1853-1938), занимавшийся систематизацией бактериальных инфекций. Он нашёл вещество, которое бактерии одного класса окрашивало, а другого - нет. Те, что окрашивались в розовый цвет, теперь в честь учёного называются грамположительными, а те, что оставались бесцветными, - грамотрицательными. В каждом из классов миллионы различных бактерий. Для человека - вредоносных, нейтральных и даже полезных, они живут в почве, воде, слюне, кишечнике - где угодно. Наши защитные рецепторы умеют избирательно опознавать и те и другие, включая соответствующую защиту против опасных для своего носителя. И краситель Грама мог их различать за счёт связывания (или несвязывания) с теми же самыми «инвариантными» компонентами бактериальных стенок.

Оказалось, что стенки микобактерий - а именно к ним относятся туберкулёзные палочки - устроены особенно сложно и распознаются сразу несколькими рецепторами. Наверное, поэтому у них превосходные адъювантные свойства. Итак, смысл применения адъюванта - обмануть иммунную систему, послать ей ложный сигнал о том, что организм заражён опасным патогеном. Заставить реагировать. А на самом деле в вакцине такого патогена нет вообще или он не такой опасный.

Нет сомнений, что можно будет найти и другие, в том числе неприродные, адъюванты для иммунизаций и вакцинаций. Это новое направление биологической науки имеет колоссальное значение для медицины.

Включаем-выключаем нужный ген

Современные технологии позволяют выключать («нокаутировать») единственный ген у подопытной мыши, который кодирует один из рецепторов врождённого иммунитета. Например, отвечающий за распознавание тех же самых грамотрицательных бактерий. Тогда мышь теряет способность обеспечить свою защиту и, будучи инфицированной, погибает, хотя все остальные компоненты иммунитета у неё не нарушены. Именно так сегодня экспериментально и изучается работа систем иммунитета на молекулярном уровне (пример плодовой мушки мы уже обсуждали). Параллельно клиницисты учатся связывать отсутствие у людей иммунитета к определённым инфекционным заболеваниям с мутациями в конкретных генах. Сотни лет известны примеры, когда в некоторых семьях, родах и даже племенах была чрезвычайно высока смертность детей в раннем возрасте от совершенно определённых болезней. Теперь становится понятно, что в некоторых случаях причина - мутация какого-то компонента врождённого иммунитета. Ген выключен - частично или полностью. Поскольку большинство генов у нас - в двух копиях, то надо специально постараться, чтобы обе копии были испорчены. «Достичь» этого можно в результате близкородственных браков или кровосмешения. Хотя было бы ошибкой думать, что это объясняет все случаи наследственных заболеваний иммунной системы.

В любом случае, если причина известна, есть шанс найти способ избежать непоправимого, хотя бы в будущем. Если ребёнка с диагностированным врождённым дефектом иммунитета целенаправленно защищать от опасной инфекции до 2-3-летнего возраста, то с завершением формирования иммунной системы смертельная опасность для него может миновать. Даже без одного уровня защиты он будет в состоянии справляться с угрозой и, возможно, проживёт полноценную жизнь. Опасность останется, но её уровень снизится в разы. Ещё есть надежда на то, что когда-нибудь генотерапия войдёт в повседневную практику. Тогда больному надо будет просто перенести «здоровый» ген, без мутации. У мыши учёные умеют не только выключать ген, но и включать. У человека это намного сложнее.

О пользе простокваши

Стоит вспомнить ещё об одном предвидении И. И. Мечникова. Сто лет назад он связывал активность открытых им фагоцитов с питанием человека. Хорошо известно, что в последние годы жизни он активно употреблял и пропагандировал простоквашу и прочие кисломолочные продукты, утверждая, что поддержание необходимой бактериальной среды в желудке и кишечнике чрезвычайно важно и для иммунитета, и для продолжительности жизни. И тут он опять оказался прав.

Действительно, исследования последних лет показали, что симбиоз кишечных бактерий и человеческого организма намного глубже и сложнее, чем полагали до сих пор. Бактерии не только помогают процессу пищеварения. Поскольку в них присутствуют все характерные химические структуры микробов, то даже самые что ни на есть полезные бактерии обязаны распознаваться системой врождённого иммунитета на клетках кишечника. Оказалось, что через рецепторы врождённого иммунитета бактерии посылают организму некие «тонизирующие» сигналы, смысл которых ещё не полностью установлен. Но уже известно, что уровень этих сигналов очень важен и если он снижен (например, бактерий в кишечнике недостаточно, в частности от злоупотребления антибиотиками), то это один из факторов возможного развития онкологических заболеваний кишечного тракта.

Двадцать лет, прошедшие с момента последней (последней ли?) революции в иммунологии, - слишком малый срок для широкого практического применения новых идей и теорий. Хотя вряд ли в мире осталась хоть одна серьёзная фармацевтическая компания, которая ведёт разработки без учёта новых знаний о механизмах врождённого иммунитета. И некоторые практические успехи уже достигнуты, в частности в разработке новых адъювантов для вакцин.

А более глубокое понимание молекулярных механизмов иммунитета - как врождённого, так и приобретённого (не надо забывать, что они должны действовать вместе - победила дружба) - неизбежно приведёт к значительному прогрессу в медицине. Сомневаться в этом не стоит. Следует лишь немного подождать.

Но вот в чём промедление крайне нежелательно, так это в просвещении населения, а также в смене стереотипов в преподавании иммунологии. Иначе наши аптеки будут по-прежнему ломиться от доморощенных лекарств, якобы универсально усиливающих иммунитет.

Сергей Артурович Недоспасов - заведующий кафедрой иммунологии биологического факультета МГУ им. М. В. Ломоносова, заведующий лабораторией Института молекулярной биологии им. В. А. Энгельгардта РАН, заведующий отделом Института физико-химической биологии им. А. Н. Белозерского.

«Наука и жизнь» об иммунитете:

Петров Р. Точно по цели. - 1990, № 8.

Мате Ж. Человек с точки зрения иммунолога. - 1990, № 8.

Чайковский Ю. Юбилей Ламарка-Дарвина и революция в иммунологии. - 2009, №№ , .

Добрый день, уважаемые друзья! Итак, сегодня речь вновь пойдет о важной составляющей для здоровья человека – его иммунитете.

Конечно, все мы понимаем, что необходимо следить за здоровьем, и каждый из нас неоднократно слышал и сам произносил эту фразу – повышение иммунитета. Сегодня нашей темой станет одна из сторон данного вопроса, а именно, что такое гуморальный иммунитет?

Этот термин особенно часто приходится слышать в медицинских учреждениях. Попробуем и мы понять, что это значит, и как это работает. Классификация видов защитной системы человека довольно обширна, и включает в себя нескольких пунктов.

Гуморальные факторы иммунитета, выражаясь простыми словами, это постоянная выработка антител, призванных уничтожать патогенные вирусы и инфекционные проявления. Противостояние должно быть постоянным, только так можно сохранить здоровье и предотвратить опасные болезни. Иммунитет человека, это звено, которое не должно быть слабым.

В связи с данным типом защитной системы, нельзя не упомянуть о втором виде, который несколько отличается по своему функционалу, но неразрывно связан с вышеупомянутым. Это клеточный вид защитной системы. Вместе они позволяют достигнуть отличного эффекта. В чём различия между клеточным и гуморальным иммуннозащитным действием?

  • Клеточный имеет способность распознавать и поражать грибы, вирусы, чужеродные клетки и ткани в собственных клеточных структурах.
  • Гуморальная теория иммунитета связана с поражением бактерий находящихся в околоклеточном пространстве, и главным образом в составе плазмы.

В основе теории заложены процессы специфического взаимодействия антител. Основа иммунитета В – лимфоциты, синтезированные с родными белками, способны моментально реагировать на появление чужеродных белков.

При этом, как только в крови намечается появление инородного вещества, даже независимо от его вредности, тут же образуются антитела. А такая реакция способна вызвать поражение «чужеземца» без особых усилий.

То есть, чтобы совсем было понятно, механизм действия прост, защиту нашей крови и клеток при гуморальном иммунитете, осуществляют белки антигены. Они входят в кровяной состав и другие жидкости нашего с вами организма.

Гуморальный иммунитет – это распознание бактерий в любой жидкости организма, будь то кровь, лимфа, слюна или другая. Название «гуморальный» и есть жидкость, влага. При повсеместном образовании антител или иммуноглобулинов, будь то костный мозг, лимфоузлы или кишечник, белковые соединения «липнут» к инородным бактериальным структурам. Успешно разрушают их, выводя затем из организма с той же жидкостью. Существует пять основных типов иммуноглобулинов:

А, D, Е, G, M. От всех, имеющихся в нас лимфоцитов, их определяется в организме порядка 15%.

Немного истории


История изучения гуморального звена иммунитета уходит в те годы, когда в 19 веке возник спор между двумя выдающимися учеными Ильей Мечниковым и Паулем Эрлихом. В то время не уделялось столько внимания вопросу иммунитета и люди страдали от постоянных тяжелых заболеваний и инфекционных поражений.

На основе этой трудноразрешимой задачи и сошлись в споре мнения учёных мужей. Доказательства Мечникова были основаны на том, что иммунные свойства организма человека работают исключительно на уровне клеточных процессов. То есть клетки основа основ иммунитета.

Эрлих спорил со своим оппонентом и доказывал, что плазма крови есть основной двигатель защитных процессов, и именно от ее состава зависит иммунитет. Так длилось много лет, и никто из них не стал победителем важного спора, вернее, они оба оказались победителями и получили по Нобелевской премии.

Вот такая правдивая история из жизни великих ученых, позволившая путем долгого исследования сделать важное открытие. Считается, что гуморальный иммунитет открыл П. Эрлих.

Получилось, что один доказывал преимущества клеточного иммунитета, а другой гуморального. Итог спора нам известен, обе защитные системы имеют для человека огромное значение и тесно взаимосвязаны друг с другом. Регулировка защитных процессов происходит в двух системах, клеточной и молекулярной.

Только за счёт взаимодействия этого симбиоза возникло многоклеточное существо, способное противостоять бесконечным атакам вирусов и патогенных микробов. И имя этому существу Человек. Наша уникальная система позволила нам выжить и пройти сквозь тысячелетия, постоянно адаптируясь к среде обитания.

Гуморальный специфический и неспецифический иммунитет


Все мы реагируем по – разному на внешние негативные факторы, способные вызвать заболевания. Одни начинают хандрить и испытывать признаки болезни от малейшего дуновения ветерка, другие могут выдержать ледяную прорубь. Всё это механизм действия защитного фона.

Сегодня работу человеческого тела, медики классифицируют как специфическую и неспецифическую. Давайте разберем подробнее каждое из понятий.

  • Специфическая реакция или форма направляется на какой – либо одиночный фактор. Примером может послужить человек, переболевший будучи ребёнком ветряной оспой, после чего, у него выстроился стойкий иммунитет на данное заболевание. Сюда же можно включить все те прививки и вакцинации, которые нам были сделаны в детском возрасте.
  • Неспецифическая форма подразумевает универсальную защиту, данную природой и реакцию организма на проникновение в организм инфекции.

Давайте рассмотрим принцип действия этих двух форм более детально.

К факторам специфического свойства, прежде всего, принадлежат иммуноглобулины или антитела. Ими занимаются в крови белые клетки, иначе их можно назвать В – лимфоцитами. Как вырабатываются антитела в организме?

Первая часть всегда появляется путем передачи при рождении от матери, вторая через грудное молоко. Проходит время, и человек становится способен сам вырабатывать их из стволовых клеток или после воздействия вакцины.

К неспецифическим факторам относятся вещества без четкой специализации, это: тканевые частицы организма, кровяная сыворотка и белки в ней, железы и их секреторная способность подавлять рост микробов, лизоцим, содержащий в себе антибактериальный фермент.

Гуморальное звено иммунитета играет важную роль и в том и в другом случае и выстраивается постоянным образованием во внутренних системах организма «умных» антител.

Нарушения

Методы изучения позволяют выявить нарушения в гуморальном иммунитете. Это делается при помощи специального анализа – иммунограммы. Данное обследование позволяет понять количество находящихся в организме В – лимфоцитов, иммуноглобулинов, показатель интерферона и другие важные параметры.

Этот анализ проводится путем забора крови из вены. Делается это натощак утром, так, чтобы до этого было 8 часов воздержания от пищи, алкоголя и курения.

Всё это довольно трудные понятия для восприятия обычным человеком, скорее это прерогатива специалистов. Но все же, интересно понять принцип действия иммунитета и немного расширить свой кругозор в этом вопросе. Не забывайте поддерживать свой организм, и помните, от состояния гуморального иммунитета зависит ваше здоровье!


Close