Класс: 8

Цели урока:

  • Образовательная: добиться усвоения теоремы Пифагора, привить навыки вычисления неизвестной стороны прямоугольного треугольника по двум известным, научить применять теорему Пифагора к решению простейших задач
  • Развивающая: способствовать развитию способности к сопоставлению, наблюдательности, внимания, развитие способности к аналитико-синтетическому мышлению, расширение кругозора
  • Воспитательная: формирование потребности в знаниях, интереса к математике

Тип урока: урок изложения нового материала

Оборудование: компьютер, мультимедийный проектор, презентация к уроку (Приложение 1 )

План урока:

  1. Организационный момент
  2. Устные упражнения
  3. Исследовательская работа, выдвижение гипотезы и проверка ее на частных случаях
  4. Объяснение нового материала
    a) О Пифагоре
    b) Формулировка и доказательство теоремы
  5. Закрепление изложенного через решение задач
  6. Задание на дом, подведение итогов урока.

Ход урока

Слайд 2: Выполните упражнения

  1. Раскройте скобки: (3 + х) 2
  2. Вычислите 3 2 + х 2 при х = 1, 2, 3, 4
    – Существует ли натуральное число, квадрат которого равен 10, 13, 18, 25?
  3. Найдите площадь квадрата со стороной 11 см, 50 см, 7 дм.
    – По какой формуле находится площадь квадрата?
    – А как найти площадь прямоугольного треугольника?

Слайд 3: Вопрос-ответ

– Угол, градусная мера которого равна 90°. (Прямой)

– Сторона, лежащая напротив прямого угла треугольника. (Гипотенуза)

– Треугольник, квадрат, трапеция, круг – это геометрические … (Фигуры)

– Меньшая сторона прямоугольного треугольника. (Катет)

– Фигура, образованная двумя лучами, исходящими из одной точки. (Угол)

– Отрезок перпендикуляра, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. (Высота)

– Треугольник, у которого две стороны равны. (Равнобедренный)

Слайд 4: Задача

Построить прямоугольный треугольник со сторонами 3 см, 4 см и 6 см.

Задание разбивается по рядам.

1 ряд 2 ряд 3 ряд
Катет a 3 3
Катет b 4 4
Гипотенуза с 6 6

Вопросы:

– Получился ли у кого-нибудь треугольник с заданными сторонами?

– Какой можно сделать вывод? (Прямоугольный треугольник нельзя задать произвольным образом. Между его сторонами существует зависимость).

– Измерьте получившиеся стороны. (Примерный средний результат от каждого ряда заносится в таблицу)

1 ряд 2 ряд 3 ряд
Катет a 3 3 ~4,5
Катет b 4 ~5,2 4
Гипотенуза с ~5 6 6

– Попробуйте установить связь между катетами и гипотенузой в каждом из случаев.

(Предлагается вспомнить устные упражнения и проверить такую же зависимость между остальными числами).

– Обращается внимание на то, что точного результата не получится, т.к. измерения нельзя считать точными.

– Учитель просит высказать предположения (гипотезы) : учащиеся формулируют.

– Да, действительно, между гипотенузой и катетами существует зависимость и первым ее доказал ученый, имя которого вы назовете сами. В честь него эта теорема и названа.

Слайд 5: Расшифруйте

Слайд 6: Пифагор Самосский

– Кто назовет тему сегодняшнего урока?

Учащиеся в тетрадях записывают тему урока: “Теорема Пифагора”

– Теорема Пифагора – одна из главных теорем геометрии. С ее помощью доказываются многие другие теоремы и решаются задачи из различных областей: физики, астрономии, строительства и др. Она была известна задолго до того, как ее доказал Пифагор. Древние египтяне использовали ее при построении прямоугольного треугольника со сторонами 3, 4 и 5 единиц с помощью веревки для построения прямых углов при закладке зданий, пирамид. Поэтому такой треугольник называют египетским треугольником.

Существует более трехсот способов доказательства этой теоремы. Мы рассмотрим сегодня один из них.

Слайд 7: Теорема Пифагора

Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано:

Прямоугольный треугольник,

a, b – катеты, с – гипотенуза

Доказать:

Доказательство.

1. Продолжим катеты прямоугольного треугольника: катет а – на длину b , катет b – на длину а.

– До какой фигуры можно достроить треугольник? Почему до квадрата? Чему будет равна сторона квадрата?

2. Достроим треугольник до квадрата со стороной а + b .

– Как можно найти площадь этого квадрата?

3. Площадь квадрата равна

– Разобьем квадрат на части: 4 треугольника и квадрат со стороной с.

– Каким образом еще можно найти площадь исходного квадрата?

– Почему равны получившиеся прямоугольные треугольники?

4. С другой стороны,

5. Приравняем получившиеся равенства:

Теорема доказана.

Существует шуточная формулировка этой теоремы: “Пифагоровы штаны во все стороны равны”. Вероятно, такая формулировка связана с тем, что первоначально эта теорема была установлена для равнобедренного прямоугольного треугольника. Причем, звучала она немного по-другому: “Площадь квадрата, построенного на гипотенузе прямоугольного треугольника равна сумме площадей квадратов, построенных на его катетах”.

Слайд 8: Другая формулировка теоремы Пифагора

А я приведу вам еще одну формулировку этой теоремы в стихах:

Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим
И таким простым путем
К результату мы придем.

– Итак, сегодня вы познакомились с самой известной теоремой планиметрии – теоремой Пифагора. Как же формулируется теорема Пифагора? Как еще ее можно сформулировать?

Первичное закрепление материала

Слайд 9: Решение задач по готовым чертежам.

Слайд 10: Решение задач в тетради

Три учащихся одновременно вызываются к доске для решения задач.

Слайд 11: Задача индийского математика XII века Бхаскары

Подведение итогов урока:

– Что нового вы узнали сегодня на уроке?

– Сформулируйте теорему Пифагора.

– Что вы научились делать на уроке?

Домашнее задание:

– Выучить теорему Пифагора с доказательством

– Задачи из учебника № 483 в, г; № 484 в, г.

– Для более подготовленных учащихся: найти другие доказательства теоремы Пифагора, выучить одно из них.

Оценивается работа класса в целом, выделяя отдельных учеников.

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

(в данном случае катет b ). Тогда для константы интегрирования получим:




Вопрос - ответ Угол, градусная мера которого равна 90° ПРЯМОЙ Сторона, лежащая напротив прямого угла треугольника ГИПОТЕНУЗА Треугольник, квадрат, трапеция, круг – это геометрические … ФИГУРЫ Меньшая сторона прямоугольного треугольника КАТЕТ Фигура, образованная двумя лучами, исходящими из одной точки УГОЛ Отрезок перпендикуляра, проведенный из вершины треугольника к прямой, содержащей противоположную сторону ВЫСОТА Треугольник, у которого две стороны равны РАВНОБЕДРЕННЫЙ




Пифагор Самосский (ок. 580 – ок. 500 до н.э.) Древнегреческий математик и философ. Родился на острове Самос. Организовал свою школу – школу Пифагора (пифагорейский союз), которая была одновременно и философской школой, и политической партией, и религиозным братством. Первым доказал зависимость между гипотенузой и катетами прямоугольного треугольника.










Задача индийского математика XII века Бхаскары На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?»


Close