Для гидролиза сложных эфиров и всех остальных производных кислот необходим кислый или щелочной катализ. При кислом гидролизе получают карбоновые кислоты и спирты (реакция обратная этерификации), при щелочном гидролизе образуются соли карбоновых кислот и спирты.

Кислый гидролиз сложных эфиров:

Механизм S N , нуклеофил - H 2 O, происходит замещение алкоксигруппы на гидроксил.

Щелочной гидролиз сложных эфиров: реакция идет в два этапа с 2-мя молями основания, образовавшаяся кислота превращается в соль.

Механизм S N , Nu = − OH

Образование солеобразных соединений Амиды представляют собой нейтральные вещества, так как основные свойства аммиака ослаблены замещением в нем атома водорода кислотным остатком. Поэтому группа NH 2 в амидах в отличие от аминов лишь с трудом образует ониевый катион. Все же с сильными кислотами амиды дают соли, например Cl, легко разлагающиеся водой. С другой стороны, водород группы NH 2 в амидах легче, чем ваммиаке и в аминах, замещается на металлы. Ацетамид, например, легко растворяет окись ртути, образуя соединение (CH 3 CONH) 2 Hg.

Возможно, однако, что при образовании металлических производных происходит изомеризация амида и получающееся соединение имеет изомерное (таутомерное) строение соли имидокислоты

т. е. здесь имеет место аналогия с солями синильной кислоты.

2. Действие азотистой кислоты С азотистой кислотой амиды реагируют, подобно первичным аминам, с образованием карбоновых кислот и выделением азота:

3. Омыление При кипячении с минеральными кислотами и щелочами амиды присоединяют воду, образуякарбоновую кислоту и аммиак:

4. Действие галоидных алкилов. При действии галоидных алкилов на амиды или их металлические производные получаются N-замещенные амиды:

5. Действие пятихлористого фосфора. При действии пятихлористого фосфора на амиды получаются хлорамиды

легко распадающиеся на соляную кислоту и имидхлориды

Последние с аммиаком могут давать соли амидинов;

6. Превращение в амины. Энергичным восстановлением амидов могут быть получены первичные амины с тем же числом атомов углерода:

7. Реакция Гофмана. При действии на амиды гипогалогенита или брома и щелочи образуются амины, а углеродныйатом карбонильной группы отщепляется в виде СО 2 (А. Гофман). Ход реакции можно представить так:

В учебных руководствах до сих пор еще часто встречается другое толкование механизма этой реакции:

Однако такой ход реакции менее правдоподобен, так как образование осколка

с атомом азота, несущим две свободные электронные пары, мало вероятно.

Против этого механизма говорит, в частности, тот факт, что если радикал R оптически деятельный, то он не рацемизуется в результате реакции. Между тем даже мимолетное существование свободного радикала R – : привело бы к потере оптической деятельности.

Химические свойства. Нитрогруппа - одна из наиб. сильных электроноакцепторных групп и способна эффективно делокализовать отрицат. заряд. В ароматич. соед. в результате индукционного и особенно мезомерного эффектовона влияет на распределение электронной плотности: ядро приобретает частичный положит. заряд, к-рый локализован гл. обр. в орто- и пара-положениях; константы Гаммета для группы NO 2 s м 0,71, s n 0,778, s + n 0,740, s - n 1,25. Т. обр., введение группы NO 2 резко увеличивает реакц. способность орг. соед. по отношению к нуклеоф.реагентам и затрудняет р-ции с электроф. реагентами. Это определяет широкое применение нитросоединений в орг. синтезе: группу NO 2 вводят в нужное положение молекулы орг. соед., осуществляют разл. р-ции, связанные, как правило, с изменением углеродного скелета, и затем трансформируют в др. ф-цию или удаляют. В ароматич. ряду часто используют и более короткую схему: нитрование-трансформация группы NO 2 .

Образование нитроновых к-т в ряду ароматических нитросоединений связано с изомеризацией бензольного кольца в хиноидную форму; напр., нитробензол образует с конц. H 2 SO 4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет фотохромизм в результате внутримол. переноса протона с образованием ярко-синего О-производного:

При действии оснований на первичные и вторичные нитросоединения образуются соли нитросоединений; амбидентные анионы солей в р-циях с электрофилами способны давать как О-, так и С-производ-ные. Так, приалкилировании солей нитросоединений алкилгалогенидами, триалкилхлорсиланами или R 3 O + BF - 4 образуются продукты О-алкилирования. Последние м.б. получены также при действии диазометана либо N,О-бис-(триметилсилил)аце-тамида на нитроалканы с рК а < 3 или нитроновые к-ты, напр.:

Ациклич. алкиловые эфиры нитроновых к-т термически нестабильны и распадаются по внутримол. механизму:

Р-ц и и с р а з р ы в о м с в я з и С-N. Первичные и вторичные нитросоединения при нагр. с минер. к-тами в присут. спиртового или водного р-ра щелочи образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых к-т:

В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных к-т на алифатические нитросоединения может приводить к гидроксамовым к-там, напр.:

Известно много методов восстановления нитросоединений до аминов. Широко используют железные опилки, Sn и Zn в присут. к-т; при каталитич. гидрировании в качестве катализаторов используют Ni-Ренея, Pd/C или Pd/PbCO 3 и др. Алифатические нитросоединения легко восстанавливаются до аминов LiAlH 4 и NaBH 4 в присут. Pd, амальгамамиNa и Аl, при нагр. с гидразином над Pd/C; для ароматических нитросоединений иногда применяют ТlСl 3 , СrСl 2 и SnCl 2 , ароматич. поли-нитросоединения избирательно восстанавливаются до нитраминов гидросульфидом Na в СН 3 ОН. Существуют способы избират. восстановления группы NO 2 в полифункциональных нитросоединениях без затрагивания др. ф-ций.

При действии Р(III) на ароматические нитросоединения происходит последоват. дезоксигенирование группы NO 2 с образованием высокореакционноспособных нитренов. Р-цию используют для синтеза конденсир. гетероциклов, напр.:

Р-ц и и с с о х р а н е н и е м г р у п п ы NO 2 . Алифатические нитросоединения, содержащие a-Н-атом, легко алкилируются и ацилируются с образованием, как правило, О-производных. Однако взаи-мод. дилитиевых солейпервичных нитросоединений с алкилгалогенидами, ангидридами или галогенангидридами карбоновых к-т приводит к продуктам С-алкилирования или С-ацилирования, напр.:

Известны примеры внутримол. С-алкилирования, напр.:

Первичные и вторичные нитросоединения реагируют с алифатич. аминами и СН 2 О с образованием р-аминопроизводных (р-ция Манниха); в р-ции можно использовать предварительно полученные метилольные производные нитросоединений или аминосоед.:

Нитрометан и нитроэтан могут конденсироваться с двумя молекулами метилоламина, а высшие нитроалканы- только с одной. При определенных соотношениях реагентов р-ция может приводить к гетероциклич. соед., напр.: при взаимод. первичного нитроалкана с двумя эквивалентами первичного амина и избытком формальдегидаобразуются соед. ф-лы V, если реагенты берут в соотношении 1:1:3-соед. ф-лы VI.

Ароматические нитросоединения легко вступают в р-ции нуклеоф. замещения и значительно труднее-в р-ции электроф. замещения; при этом нуклеофил на правляется в орто- и пора-поло жения, а электрофил-в мета-положение к группе NO 2 . Константа скорости электроф. нитрования нитробензола на 5-7 порядков меньше, чембензола; при этом образуется м-динитробензол.

При карбоксилировании первичных нитроалканов действием CH 3 OMgOCOOCH 3 образуются a-нитрокарбоновые к-ты или их эфиры.

При обработке солей моно-нитросоединений C(NO 2) 4 ., нитритами Ag или щелочных металлов либо при действиинитритов на a-гало-геннитроалканы в щелочной среде (р-ция Тер Меера) образуются гем-динитросоединения.Электролиз a-галоген-нитроалканов в апротонных р-рителях, а также обработка нитросоединений Сl 2 в щелочной среде или электроокисление солей нитросоединений приводят к виц-динитросоединениям:

Нитрогруппа не оказывает существ. влияния на свободно-радикальное алкилирование или арилирование ароматич. соед.; р-ция приводит в осн. к орто- и пара-замещенным продуктам.

Для восстановления нитросоединений без затрагивания группы NO 2 применяют NaBH 4 , LiAlH 4 при низких т-рах или р-р дибора-на в ТГФ, напр.:

Ароматич. ди- и три-нитросоединения, в частности 1,3,5-тринитробен-зол, образуют устойчивые ярко окрашенные кристаллич. мол. комплексы с ароматич. соед.-донорами электронов (аминами, фенолами и др.). Комплексы с пикриновой к-той используют для выделения и очистки ароматич. углеводородов. Взаимод. ди- и тринитробензоловс сильными основаниями (НО - , RO - , N - 3 , RSO - 2 , CN - , алифатич. аминами) приводит к образованию комплексов Майзен-хаймера, к-рые выделяют в виде окрашенных солей щелочных металлов.

В качестве окислителей для этих реакций пригодны хромовая или азотная кислота, хромовая смесь, двуокись марганца или двуокись селена.

При окислении хромовой кислотой спирт нуклеофильно присоединяется к хромовой кислоте, при этом отщепляется вода и образуется эфир хромовой кислоты (это первая стадия реакции, она аналогична образованию сложных эфиров карбоновых кислот, ср. разд. Д,7.1.5.1). Во второй стадии, идущей, вероятно, через циклическое переходное состояние, a-водород спирта переходит к остатку хромата, причем металл из шестивалентного состояния переходит в четырехвалентное:

n -CH 3 O > п -трет-С 4 H 9 > п -СН 3 > п -Сl > п -NO 2 (Г.6.20)

При окислении первичных спиртов образующийся альдегид должен быть защищен от дальнейшего окисления в карбоновую кислоту. Можно, например, постоянно отгонять альдегид из реакционной смеси: это вполне осуществимо, так как температура кипения альдегида обычно ниже, чем температура кипения соответствующего спирта. Все же выход альдегидов при окислении бихроматом редко превышает 60%. Примечательно, что при надлежащем проведении реакции кратные углерод-углеродные связи почти не затрагиваются.

Альдегиды образуются также при нагревании спиртов с водным нейтральным раствором бихромата, однако хорошие выходы при этом дают лишь бензиловые спирты.

Более высокие выходы альдегидов можно получить при окислении первичных спиртов трет -бутилхроматом (в петролейном эфире, бензоле или четыреххлористом углероде) или двуокисью марганца (в ацетоне, петролейном эфире, четыреххлористом углероде или разбавленной серной кислоте). Эти реагенты позволяют с хорошими выходами получать также ненасыщенные и ароматические альдегиды.

Окисление вторичных спиртов до кетонов осуществляется еще легче, чем окисление первичных спиртов. Выходы здесь выше, так как, во-первых, реакционная способность вторичных спиртов выше, чем первичных, а во-вторых, образующиеся кетоны гораздо устойчивее к окислению по сравнению с альдегидами. В ряду стероидов и терпенов хорошо зарекомендовало себя окисление вторичных спиртов комплексом хромовой кислоты с пиридином, а также хромовым ангидридом в диметилформамиде. Хорошим окислителем является также хромовый ангидрид в ацетоне; с его помощью можно окислять ненасыщенные вторичные спирты, не затрагивая кратную углерод-углеродную связь.

Новым методом, пригодным и для пространственно затрудненных спиртов, является окисление диметилсульфоксидом в уксусном ангидриде.

Согласно приводимой ниже методике, реакция ведется в двухфазной системе. Образовавшиеся кетоны извлекаются органическим растворителем и таким образом предохраняются от дальнейшего окисления.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп.

В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С 12 H 22 O 11 .

Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р. Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии».

В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде.

Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром.

Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы. Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году.

Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение –полисахаридами .

Полисахариды – высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов.

В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы – важнейших представителей полисахаридов.

Структурное звено полимерных цепей этих полисахаридов, формула которых (С 6 H 10 O 5) n , – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С 6 H 10 O 5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации.

Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный.

При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание.
Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

КАННИЦЦАРОРЕАКЦИЯ , окислит.-восстановит. диспропорционирование альдегидов под действием щелочи с образованием первичных спиртов и карбоновых к-т, напр.:

Альдегид обрабатывают конц. водным или водно-спиртовым р-ром щелочи при охлаждении или слабом нагревании.Катализаторы - разл. металлы (напр., Ag, Ni, Co, Сu) и их оксиды. В р-цию вступают альдегиды, не содержащие атомН в a-положении к карбонильной группе. В противном случае предпочтительней идет не Канниццаро реакция, аальдольная конденсация. Электроноакцепторные заместители в кольце ароматич. альдегидов ускоряют процесс, а электронодонорные замедляют. Бензальдегиды с заместителями в орто-положениях в Канниццаро реакцию не вступают; о- и п-гидроксибензальдегиды реагируют только в присут. Ag. Р-цию с использованием двух разл.альдегидов (т. наз. перекрестная Канниццаро реакция) применяют гл. обр. для получения с большим выходом первичных спиртов из ароматич. альдегидов. В качестве восстановителя при этом обычно выступает формальдегид:

АrСНО + СН 2 О: АrСН 2 ОН + НСООН

При синтезе полигидроксиметилированных соед. формальдегид на первой стадии участвует в альдольной конденсации, а затем в качестве восстановителя в перекрестной Канниццаро реакции:

Предполагаемый механизм Канниццаро реакции в гомог. среде включает стадию гидридного переноса

Для ароматич. альдегидов не исключена возможность участия в Канниццаро реакции анион-радикалов, образующихся в результате одноэлектронного переноса. Р-ция, подобная Канниццаро реакции, осуществляется при внутримол. диспропорционировании a-кетоальдегидов в присут. щелочей (перегруппировка Канниццаро):

Канниццаро реакцию применяют для пром. синтеза пентаэритрита, препаративного получения спиртов, карбоновых к-т и др. Р-ция открыта С. Канниццаро в 1853.

Пиррол, фуран и тиофен являются пятичленными гетероциклическими соединениями с одним гетероатомом.

Нумерация атомов в составе гетероцикла начинается с гетероатома и идет против часовой стрелки. Положения 2- и 5-называют a-положениями, 3- и 4- – b-положениями.

По формальным признакам эти соединения относятся к ароматическим, так как они представляют собой сопряженные циклические p-системы, в состав которых входит 6p электронов – 4 электрона диеновой системы – и пара электронов гетероатома. Цикл является практически плоским, из чего следует, что состояние гибридизации гетероатома близко к sp 2 .

Ниже представлены резонансные структуры, иллюстрирующие делокализацию электронов гетероатома по гетероциклическому кольцу на примере фурана.

Приведенные резонансные структуры показывают, что гетероатом (в данном случае атома кислорода) в результате мезомерного взаимодействия с диеновой π-системой передает электронную плотность в кольцо, вследствие чего на атомах углерода в составе гетероцикла возникает некоторый отрицательный заряд, а на атоме кислорода, соответственно, положительный заряд. Атом кислорода, разумеется, кроме положительного мезомерного эффекта проявляет и отрицательный индуктивный эффект. Однако его проявление в свойствах рассматриваемых соединений менее выражено, в связи с чем пятичленные гетероциклы с одним гетероатомом относят к p-избыточным ароматическим гетероциклическим соединениям. Резонанс приводит к некоторой выравненности длин связей в составе гетероцикла, что также говорит об определенной ароматичности системы.

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.

Сложными эфирами называются функциональные производные карбоновых кислот общей формулы RC(0)0R".

Способы получения. Наиболее значимым способом получения сложных эфиров является ацилирование спиртов и фенолов различными ацилирующими агентами, например, карбоновой кислотой, хлорангидридами, ангидридами. Они могут быть также получены по реакции Тищенко.

Сложные эфиры с высокими выходами получают путем алкилирования солей карбоновых кислот алкилгалогенидами:

Сложные эфиры образуются в результате электрофильного присоединения карбоновых кислот к алкенам и алкинам. Реакция часто применяется для получения сложных эфиров третичных спиртов, например трет -бутиловых эфиров:

Присоединением уксусной кислоты к ацетилену получают промышленно важный мономер винилацетат, в качестве катализатора используют ацетат цинка на активированном угле:

Гидролиз. Важнейшей из реакций ацилирования является гидролиз сложных эфиров с образованием спирта и карбоновой кислоты:

Реакция осуществляется как в кислой, так и в щелочной среде. Кислотно-катализируемый гидролиз сложных эфиров - реакция, обратная этерификации, протекает по тому же самому механизму Алс 2

Щелочной гидролиз необратим, в процессе реакции на моль эфира расходуется моль щелочи, т. е. щелочь в этой реакции выступает в качестве расходуемого реагента, а не катализатора:

Гидролиз сложных эфиров в щелочной среде протекает по бимолекулярному ацильному механизму ВАС2 через стадию образования тетраэдрического интермедиата (I). Необратимость щелочного гидролиза обеспечивается практически необратимым кислотно-основным взаимодействием карбоновой кислоты (И) и алкоксид-иона (III). Образовавшийся анион карбоновой кислоты (IV) сам является довольно сильным нуклеофилом и потому не подвергается нуклеофильной атаке.

Переэтерификация. С помощью этой реакции осуществляется взаимопревращение сложных эфиров одной и той же кислоты по схеме:

Переэтерификация - обратимый процесс, катализируется как кислотами, так и основаниями, и протекает по тем же механизмам, что и реакции этерификации и гидролиза сложных эфиров. Равновесие смещают общеизвестными приемами, а именно применением избытка спирта-реагента (R"OH на приведенной схеме - для смещения вправо) или отгонкой одного из продуктов реакции, если он - самый низкокипящий компонент. Переэтерификацией, например, получают известный анестетик новокаин (основание) из этилового эфира л-аминобензойной кислоты:

Сложноэфирная конденсация. При конденсации двух молекул сложного эфира в присутствии основного катализатора образуются эфиры β-оксокислот:

Молекула этилацетата обладает слабыми СН-кислотными свойствами за счет индуктивного эффекта сложноэфирной группы и способна взаимодействовать с сильным основанием - этоксид-ионом:


Амиды карбоновых кислот. Способы получения. Строение амидной группы. Кислотно-основные свойства амидов. Кислотный и щелочной гидролиз. Расщепление амидов галогенами в щелочной среде и азотистой кислотой. Дегидратация в нитрилы.

Амидами называются функциональные производные карбоновых кислот обшей формулы R-С(О)-NH2_nR"„, где п = 0-2.

Способы получения. Наиболее важным методом получения амидов является ацилирование аммиака и аминов галогенангидридами, ангидридами и сложными эфирами.

Ацилирование аммиака и аминов галогенангидридами. Реакция ацилирования аммиака и аминов галогенангидридами экзотермична и проводится при охлаждении:

Ацилирование аммиака и аминов ангидридами. Для ацетилирования аминов чаще всего используется самый доступный из ангидридов - уксусный ангидрид:

Аммонолиз сложных эфиров. Амиды получают с помощью аммонолиза сложных эфиров. Например, при действии водного аммиака на диэтилфумарат образуется полный амид фумаровой кислоты:

Строение амидов. Электронное строение амидной группы в значительной степени сходно со строением карбоксильной группы. Амидная группа является р,л-сопряженной системой, в которой неподеленная пара электронов атома азота сопряжена с электронами л-связи С=0. Делокализация электронной плотности в амидной группе может быть представлена двумя резонансными структурами:

За счет сопряжения связь С-N в амидах имеет частично двоесвязанный характер, длина ее существенно меньше длины одинарной связи в аминах, тогда как связь С=0 несколько длиннее, чем связь С=0 в альдегидах и кетонах. Амидная группа из-за сопряжения имеет плоскую конфигурацию. Ниже приведены геометрические параметры молекулы iV-замещенного амида, установленные с помощью рентгеноструктурного анализа:

Кислотно-основные свойства. Амиды обладают слабыми как кислотными, так и основными свойствами. Основность амидов лежит в пределах значений рА"вн+ от -0,3 до -3,5. Причиной пониженной основности аминогруппы в амидах является сопряжение неподеленной пары электронов атома азота с карбонильной группой. При взаимодействии с сильными кислотами амиды протонируются по атому кислорода как в разбавленных, так и в концентрированных растворах кислот. Такого рода взаимодействие лежит в основе кислотного катализа в реакциях гидролиза амидов:

Реакции ацилирования. Вследствие наличия в сопряженной системе амидов сильной электронодонорной аминогруппы электрофильность карбонильного атома углерода, а следовательно, и реакционная способность амидов в реакциях ацилирования очень низкая. Низкая ацилирующая способность амидов объясняется также и тем, что амид-ион NH2- - плохая уходящая группа. Из числа реакций ацилирования практическое значение имеет гидролиз амидов, который можно проводить в кислой и щелочной средах. Амиды гидролизуются намного труднее, чем другие функциональные производные карбоновых кислот. Гидролиз амидов проводится в более жестких условиях по сравнению с гидролизом сложных эфиров.

Кислотный гидролиз амидов - необратимая реакция, приводящая к образованию карбоновой кислоты и аммониевой соли:

Щелочной гидролиз тоже необратимая реакция; в результате ее образуются соль карбоновой кислоты и аммиак или амин:

Расщепление азотистой кислотой. При взаимодействии с азотистой кислотой и другими нитрозирующими агентами амиды превращаются в соответствующие карбоновые кислоты с выходами до 90%:


Угольная кислота и ее функциональные производные; фосген, хлоругольные эфиры, карбаминовая кислота и ее эфиры (уретаны). Карбамид (мочевина), основные и нуклеофильные свойства. Гидролиз мочевины. Ацилмочевины (уреиды), уреидокислоты. Взаимодействие мочевины с азотистой кислотой и гипобромитами. Гуанидин, основные свойства.

Угольная кислота традиционно не относится к органическим соединениям, но она сама и ее функциональные производные имеют определенное сходство с карбоновыми кислотами и их производными, поэтому и рассматриваются в настоящей главе.

Двухосновная угольная кислота - неустойчивое соединение, легко распадается на диоксид углерода и воду. В водном растворе углекислого газа лишь 0,1% его существует в виде угольной кислоты. Угольная кислота образует два ряда функциональных производных - полные (средние) и неполные (кислые). Кислые эфиры, амиды и другие производные нестабильны и разлагаются с выделением диоксида углерода:

Полный хлорангидрид угольной кислоты - фосген СОС1 2 - низкокипящая жидкость с запахом прелого сена, очень ядовит, вызывает отек легких, образуется в качестве вредной примеси при фотохимическом окислении хлороформа в результате неправильного хранения последнего.

В промышленности фосген получают радикальным хлорированием оксида углерода (II) в реакторе, заполненном активированным углем:

Фосген, подобно хлорангидридам карбоновых кислот, обладает высокой ацилирующей способностью, из него получают многие другие функциональные производные угольной кислоты.

При взаимодействии фосгена со спиртами образуются сложные эфиры двух типов - полные (карбонаты) и неполные (хлороугольные эфиры, или хлороформиаты), последние одновременно являются и сложными эфирами, и хлорангидридами. В качестве акцептора хлороводорода и нуклеофильного катализатора при этом используют третичные амины или пиридин.

Карбаминовая кислота - неполный амид угольной кислоты - неустойчивое соединение, распадается с образованием аммиака и диоксида углерода:

Эфиры карбаминовой кислоты - карбаматы, или уретаны, - устойчивые соединения, получаемые в результате присоединения спиртов к изоцианатам или ацилированием аммиака и аминов соответствующим хлороформиатом:

Мочевина (карбамид) - полный амид угольной кислоты - впервые была выделена из мочи И. Руэлем (1773). Она является важнейшим конечным продуктом белкового обмена у млекопитающих; взрослый человек выделяет в сутки 25-30 г мочевины. Мочевина была впервые синтезирована Ф. Вёлером (1828) при нагревании цианата аммония:

Этот синтез был первым примером получения органического вещества из неорганического соединения.

В промышленности мочевину получают из аммиака и диоксида углерода при повышенных давлении и температуре (180-230 °С, 150-200 атм):

Мочевина обладает слабыми основными свойствами (р.йГвн+0,1), образует соли с сильными кислотами. Соли азотной и щавелевой кислот нерастворимы в воде.

Мочевина протонируется по атому кислорода, а не азота. Это, вероятно, связано с делокализацией неподеленных пар электронов атомов азота за счет р,π-сопряжения.

В кипящей воде мочевина гидролизуется с образованием аммиака и диоксида углерода; кислоты и основания катализируют эту реакцию:

Первичными продуктами, образующимися при нагревании мочевины, являются аммиак и изоциановая кислота. Изоциановая кислота может тримеризоваться в циануровую кислоту или конденсироваться со второй молекулой мочевины с образованием биурета. В зависимости от скорости нагрева доминирует тот или иной путь разложения мочевины:

Действие гипогалогенитов также приводит к разложению мочевины. В зависимости от условий могут образовываться азот или гидразин; последний именно так получают в промышленности:

Мочевина проявляет нуклеофильные свойства также в реакциях алкилирования и ацилирования. Алкилирование мочевины в зависимости от алкилирующего агента может приводить к О- и TV-алкильным производным:

Гуанидин, или иминомочевину (H 2 N) 2 C=NH, в промышленности получают сплавлением мочевины с нитратом аммония или при нагревании эфиров ортоугольной кислоты с аммиаком:

Гуанидин - бесцветное кристаллическое вещество, обладает сильными основными свойствами. Высокая основность на уровне гидроксидов щелочных металлов обусловлена полной делокализацией положительного заряда в симметричном катионе гуанидиния:

Остатки гуанидина и бигуанидина содержатся в некоторых природных соединениях и лекарственных веществах.

Сложные эфиры – типичные электрофилы. Из-за +М-эффекта атома кислорода, связанного с углеводородным радикалом, они проявляют менее выраженный электрофильный характер по сравнению с галогенангидридами и ангидридами кислот:

Электрофильность эфиров увеличивается, если углеводородный радикал образует с атомом кислорода сопряженную систему, т. н. активированные эфиры:

Сложные эфиры вступают в реакции нуклеофильного замещения.

1. Гидролиз сложных эфиров проходит как в кислой, так и в щелочной среде.

Кислотный гидролиз сложных эфиров – последовательность обратимых превращений, противоположных реакции этерификации:

Механизм этой реакции включает протонирование атома кислорода карбонильной группы с образованием карбкатиона, который реагирует с молекулой воды:

Щелочной гидролиз. Гидролиз в присутствии водных растворов щелочей проходит легче, чем кислотный потому, что гидроксид-анион более активный и менее объемный нуклеофил, чем вода. В отличие от кислотного, щелочной гидролиз необратим:

Щелочь выступает не в роли катализатора, а в роли реагента. Гидролиз начинается с нуклеофильной атаки гидроксид-ионом атома углерода карбонильной группы. Образуется промежуточный анион, который отщепляет алкоксид-ион и превращается в молекулу карбоновой кислоты. Алкоксид-ион, как более сильное основание, отрывает протон от молекулы кислоты и превращается в молекулу спирта:

Щелочной гидролиз необратим потому, что карбоксилат-анион имеет высокую делокализацию отрицательного заряда и не восприимчив к атаке спиртового гидроксила.

Часто щелочной гидролиз сложных эфиров называют омылением. Термин произошел от названия продуктов щелочного гидролиза жиров – мыла.

2. Взаимодействие с аммиаком (иммонолиз) и его производными протекает по механизму, аналогичному щелочному гидролизу:

3. Реакция переэтерификации (алкоголиз сложных эфиров) катализируется как минеральными кислотами, так и шеломами:

Для смешения равновесия вправо отгоняют более летучий спирт.

4. Сложноэфирная конденсация Кляйзена характерна для эфиров карбоновых кислот, содержащих атомы водорода в α-положении. Реакция протекает в присутствии сильных оснований:

Алкоксид-ион отщепляет протон от α-углеродного атома молекулы эфира. Образуется мезомерно стабилизированный карбанион (I), который, выступая в роли нуклеофила, атакует атом углерода карбонильной группы второй молекулы эфира. Образуется продукт присоединения (II). Он отщепляет алкоксид-ион и превращается в конечный продукт (III). Таким образом, всю схему механизма реакции можно разделить на три стадии:

Если в реакцию вступают два сложных эфира, содержащие α-атомы водорода, то образуется смесь четырех возможных продуктов. Реакция используется для промышленного получения ацетоуксусного эфира.

5. Восстановление сложных эфиров:

Первичные спирты образуются при действии газообразного водорода в присутствии скелетного никелевого катализатора (никель Ренея).

6. Действие магнийорганических соединений с последующим гидролизом приводит к образованию третичных спиртов.

Сложные эфиры - производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры - жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Общая формула сложных эфиров карбоновых кислот:

где R и R" - углеводородные радикалы (в сложных эфиpax муравьиной кислоты R - атом водорода).

Общая формула жиров:

гдеR", R", R"" - углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R""), в состав смешанных - различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

1. Масляная кислота СН 3 - (CH 2) 2 - СООН

3. Пальмитиновая кислота СН 3 - (CH 2) 14 - СООН

4. Стеариновая кислота СН 3 - (CH 2) 16 - СООН

5. Олеиновая кислота С 17 Н 33 СООН

СН 3 -(СН 2) 7 -СН === СН-(СН 2) 7 -СООН

6. Линолевая кислота С 17 Н 31 СООН

СН 3 -(СН 2) 4 -СН = СН-СН 2 -СН = СН-СООН

7. Линоленовая кислота С 17 Н 29 СООН

СН 3 СН 2 СН = CHCH 2 CH == CHCH 2 CH = СН(СН 2) 4 СООН

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат - груши и т. д.

Сложные эфиры высших жирных кислот и спиртов - воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) - непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

Получение. 1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

Механизм гидролиза:

Жидкие жиры превращаются в твердые путем реакции гидрогенизации. Водород присоединяется по месту разрыва двойной связи в углеводородных радикалах молекул жиров:

Реакция протекает при нагревании под давлением и в присутствии катализатора - мелко раздробленного никеля. Продукт гидрогенизации - твердый жир (искусственное сало), называется саломасом идет на производство мыла, стеарина и глицерина. Маргарин - пищевой жир, состоит из смеси гидрогенизованных масел (подсолнечного, хлопкового и др.), животных жиров, молока и некоторых других веществ (соли, сахара, витаминов и др.).

Важное химическое свойство жиров, как и всех сложных эфиров, - способность подвергаться гидролизу (омылению). Гидролиз легко протекает при нагревании в присутствии катализаторов - кислот, щелочей, оксидов магния, кальция, цинка:

Реакция гидролиза жиров обратима. Однако при участии щелочей она доходит практически до конца - щелочи превращают образующиеся кислоты в соли и тем самым устраняют возможность взаимодействия кислот с глицерином (обратную реакцию).

"

Close