Недавно наткнулась на интересную мысль о жизни на других планетах, а в частности, почему мы до сих пор не нашли ничего подобного. Некто Шнайдерман в своей книге «За горизонтом осознанного мира», делая ссылку на статью из далекого 90 года, рассказывает о понятии собственной космической частоты, что сокращенно – СКЧ.

По версии академика собственной космической частотой обладает каждое тело Вселенной. И именно СКЧ определяет характер пространства и времени, в котором это тело находится. Для Земли этот показатель равен 365, 25, то есть число оборотов вокруг собственной оси за время прохождения вокруг центрального светила – Солнца. Для каждой планеты СКЧ уникален и неповторим. И именно в этом кроется ответ на вопрос, почему мы чувствуем себя столь одинокими в пространстве Универсума.

Собственная космическая частота, в которой мы рождены, формирует для нас некий индивидуальный паттерн, через призму которого мы смотрим на мир. Все, что мы способны увидеть – лишь материализованный образ , трансформированный под наше восприятие.

Это похоже на то, как мы воспринимаем цвета. Ведь цветов, как таковых, не существует. Мы видим волны разной длины, которые мозг интерпретирует, как цвет. И еще один интересный нюанс в том, что в нашем спектре далеко не весь возможный их диапазон. Существуют вибрации, которые глаз просто не может распознать. Мы не видим ультрафиолетовый и инфракрасный, и еще множество излучений недоступно нашему восприятию.

По аналогии так же и жизнь на других планетах в ее реальном и объективном существовании невозможно распознать через фильтры чужеродного СКЧ. И даже то, что ученым, вероятно, однажды удастся найти, по этой теории, будет очень далеко от истины и правдиво только в системе, где центральной точкой отсчета является планета Земля и заданный ее сферой индивидуальный паттерн или взгляд на Универсум.

Контакт с объективным инопланетным возможен только через изменение собственной космической частоты , через ее корректировку и сонастройку с объектом исследования. Однако, этого невозможно добиться посредством одних только технических средств. Мало того, приверженцы концепции утверждают, что такое искусственное изменение СКЧ человека, если и возможно, непременно приведет к трагическим последствиям. Причина в том, что неподготовленный разум не способен перенести такой трансформации, чтобы после вернуться в исходное состояние без расстройств и повреждений.

Таким образом, внеземные контакты станут возможны только посредством развития сознания через познание и мистическую практику. Сегодня же для человечества в целом эти методики недоступны, ведь главным мерилом их доступности является уровень этики. И пока на нашей планете есть «хотя бы один военный, жаждущий захвата власти», высокие знания так и останутся скрытыми от мирового сообщества за семью замками.

В последние годы в астрономических кругах было много дискуссий по поиску жизни на других планетах, настолько, что для этого исследования был придуман новый термин – астробиология поскольку пока нет доказательств того, что жизнь существует в другом месте.

Астробиология — это наука о происхождения эволюции и распространения жизни, для которой пока нет данных, или, по крайней мере, нет данных в поддержку этой науки.

Поиск жизни в Солнечной системе

Поскольку нет поддержки утверждению о том, что жизнь существует в другом месте, большое внимание уделяется поиску планетарных условий, благоприятных для жизни.

Марс был в центре внимания в течение очень долгого времени и сейчас планируется за марсианскими образцами грунта. Красная планета примерно наполовину размером с Землю, и он имеет, по крайней мере, тонкую атмосферу. Вода существует на Марсе, хотя, вероятно, не в изобилии в паровой или твердой форме. Температура и атмосферное давление на Марсе слишком низкое для поддержания жидкой воды.

Исследовавшие поверхность Марса с 1976 году марсоходы, содержали три очень надежных эксперимента по обнаружению признаков жизни. Два эксперимента не показали никаких признаков живых организмов, третий эксперимент имел слабые, но неоднозначные данные. Даже самые оптимистичные искатели внеземной жизни согласны с тем, что эти незначительные положительные признаки, вероятно, были результатом неорганических химических реакций в почве. Помимо жуткого холода и редкости воды, сегодня на Марсе есть и другие препятствия для жизни. Например, тонкая марсианская атмосфера не обеспечивает защиту солнечного ультрафиолетового излучения, которое летально для живых существ.

С этими проблемами интерес к жизни на Марсе ослаб, хотя некоторые надежды все еще держатся, и многие думают, что жизнь, возможно, существовала на Марсе в прошлом.

Исследования Марса

В последние годы орбитальный аппарат обнаружил метан в марсианской атмосфере. Метан — это газ, часто добываемый живыми существами, хотя он также может формироваться неорганически. Спектрометр гамма-излучения на борту орбитального аппарата «Марс Одиссей» обнаружил значительное количество водорода в верхних поверхностях, что, вероятно, свидетельствует об обилии льда. Знаменитые марсоходы Spirit и Opportunity добыли убедительные доказательства того, что жидкая вода существовала на поверхности Марса. Этот последний момент является подтверждением того, что мы знаем на протяжении десятилетий: фотографии с орбитального корабля показали многочисленные особенности, которые лучше всего интерпретировать как было много жидкой воды на Марсе в прошлом. Возможно Красная планета когда-то имела гораздо более существенную атмосферу, чем сейчас, атмосферу, которая обеспечивала достаточное давление и тепло для поддержания жидкой воды.

Это имеет захватывающие надежды для пессимистов жизни на других планетах.

  • Во-первых, ученые пришли к выводу, что Марс, планета без жидкой воды, когда-то пережила близкий к глобальному потопу, все время отрицая, что такое может произойти на земле, планете с обильной водой.
  • Во-вторых, многие считают, что земная атмосфера претерпела колоссальные изменения во время потопа. Считают, что Земля пережила катастрофические изменения в ее атмосфере.

Обратите внимание на то, что в изучении астробиологии водные показатели занимают видное место.

Как универсальный растворитель, вода абсолютно необходима для жизни, составляя большинство массы многих организмов. А вода — одна из самых обильных молекул во Вселенной. В то время как вода была непосредственно обнаружена по всей вселенной (даже во внешних слоях прохладных звезд!), мы никогда не находили жидкой воды нигде во Вселенной. Жидкая вода является главным стандартом для живых существ, так как кажется, что без нее жизнь невозможна. Однако, хотя вода является необходимым условием для жизни, она далеко не является достаточным условием для жизни — требуется гораздо больше.

Исследование Юпитера

Несколько лет назад ажиотаж в научных кругах был вызван объявлением о возможности небольшого океана жидкой воды под поверхностью спутника Европа, одного из крупных спутников Юпитера. Большая часть случаев для этой воды зависит от особенностей поверхности Европы — есть большие трещины сегментов, которые напоминают особенности полярного ледяного пакета, которые являются результатом апвеллинга замерзшей между трещинами. Кроме того, если бы вода была соленой, это могло бы объяснить магнитное поле спутника Юпитера. С тех пор предположено, что на спутнике Ганимеде, еще одном крупном спутнике Юпитера, был выдвинут аналогичный аргумент.

Многие ученые в настоящее время рассматривают возможный подводный океан на спутнике Европа как наиболее вероятное место в солнечной системе, чтобы найти жизнь за пределами нашего «жилища». Этот океан, если он существует, очень темный и, вероятно, очень холодный. Несколько десятилетий назад живые организмы в таком месте были бы немыслимы. Тем не менее, ученые нашли, что организмы живут в очень агрессивных средах, таких как гидротермальные жерла глубоко в земном океане. Кроме того, подземные озера существуют далеко под ледовым покровом Антарктики. Крупнейшим и самым известным из них является озеро Восток, находящееся в 4 километрах подо льдом. Хотя мы не знаем, существует ли жизнь в этих озерах, многие ученые хотят это узнать. Они полагают, что если бы жизнь могла существовать в этих наземных озерах, почему бы жизни не существовать внутри спутника Юпитера?

Поиски жизни вне Солнечной системы

Есть ли жизнь на других планетах вне Солнечной системы всегда волновало человечество. Поэтому и в наше время ученые, астрономы, астробиологи постоянно ищут наличие жизни на других небесных телах. В национальном управлении по воздухоплаванию и исследованию космического пространства (NASA, НАСА) специально разработали предназначенный для поиска планет вне Солнечной системы у других звёзд астрономический спутник, на котором расположен космический телескоп «Кеплер».

Космический телескоп «Кеплер»

«Кеплер» это целая космическая обсерватория запущенная НАСА в 2009 году. Оснащена обсерватория сверхчувствительным фотометром способным анализировать сигналы в световой области спектра и передавать данные на Землю. Благодаря высокой разрешающей способности способен различать не только экзопланеты, а и их спутники с размером от 0,2 размера Земли. В процессе эксплуатации имелись несколько аварийных ситуаций, но до сих пор действует и передает информацию. Выведен на круговую гелиоцентрическую орбиту

Планета похожая на Землю где возможно внеземное существование по размерам названа Кеплер 186ф. Открытие Кеплера 186ф подтверждает, что в исследуемой зоне существуют звезды с планетами, помимо нашего Солнца где возможна жизнь на другой планете.
В то время, как ранее были найдены небесные тела в обитаемой зоне, они все по крайней мере на 40 процентов больше по размеру чем Земля и вероятность жизни на больших планетах меньше. Kepler-186ф больше напоминает Землю.
«Обнаружение Кеплера 186f представляет собой значительный шаг к поиску миров, как нашей планеты Земля» — утверждают астрофизики НАСА в штаб-квартире агентства в Вашингтоне. Хотя размер Kepler-186f известен, её масса и состав пока не определены.

Сейчас мы знаем всего одну планету, где существует жизнь — Земля.

Когда мы ищем жизнь за пределами нашей солнечной системы, мы концентрируем внимание на поиске небесных тел с характеристиками, которые похожи на Землю. Существует ли жизнь на другой планете со временем, конечно, раскроется.

  • Планета Kepler-186f находится в системе Kepler-186, это около 500 световых лет от Земли в созвездии Лебедя.
  • Система также является «домом» для четырех спутников планет, которые вращаются по орбите звезды которая вполовину меньше размера и массы нашего Солнца.
  • Звезда классифицируется как карликовая M или красный карлик, класс звезд, что составляет 70% звёзд в галактике Млечного пути. М карлики являются наиболее многочисленными звездами. Вероятные признаки жизни в галактике также могут исходить от планет, вращающихся вокруг M карлика.
  • Kepler-186f вращается вокруг своей звезды каждые 130-дней и получает одну треть энергии от своей звезды, что Земля получает от Солнца, ближе к краям обитаемой зоны.
  • На поверхности Kepler-186f яркость звезды соответствует яркости, когда наше Солнце освещает примерно за час до захода солнца.

Находясь в обитаемой зоне это не означает, что мы знаем, что это небесное тело пригодно для жизни. Температура на планете сильно зависит от атмосферы планеты. Kepler-186f можно рассматривать как двоюродный брат Земли имеющий много свойств, которые напоминают нашу планету, а не близнец.

Четыре спутника этой планеты Кеплер 186b, Кеплер — 186c, Кеплер — 186d и Kepler-186e вращаются вокруг их солнца каждые четыре, семь, 13 и 22 дня, соответственно, что делает их слишком жаркими для жизни.
Следующими шагами для определения есть ли жизнь на других планетах включают в себя измерения их химического состава, определение атмосферных условий, продолжая поиски человечества, чтобы найти действительно землеподобные миры.

Выводы

Долгое время ученые считали, что жизнь на Земле сначала развивалась в теплых, очень гостеприимных бассейнах, а затем колонизировала более сложные условия. Сейчас многие думают, что жизнь началась на окраинах, в очень враждебных местах, а затем мигрировала в другом направлении в лучшие места.

Большая часть мотивации для этого полного разворота мышления вытекает из необходимости найти жизнь в другом месте. Ученые должны приветствовать поиски внеземной жизни, хотя многие эксперименты продолжат давать нулевые результаты, опровергая при этом эволюционную теорию происхождения.

Вероятность существования жизни на других планетах определяется масштабами Вселенной. То есть чем больше Вселенная, тем больше вероятность случайного возникновения жизни где-нибудь в ее отдаленных уголках. Так как согласно современным классическим моделям Вселенной она является бесконечной в пространстве, кажется, что вероятность существования жизни на других планетах стремительно растет. Подробнее данный вопрос будет рассмотрен ближе к концу статьи, так как начать придется с представления самой инопланетной жизни, определение которой довольно размыто.

По некой причине до недавнего времени у человечества сложилось четкое представление инопланетной жизни в форме серых гуманоидов с большими головами. Однако, современные кинофильмы, литературные произведения, следуя за развитием самого научного подхода к этому вопросу, все более выходят за рамки указанных выше представлений. Действительно, Вселенная довольно разнообразна и, учитывая сложную эволюцию человеческого вида, вероятность возникновения схожих форм жизни на разных планетах с разными физическими условиями – крайне мала.

Прежде всего следует выйти за рамки представления жизни таковой, какой она есть на Земле, так как мы рассматриваем жизнь на других планетах. Оглядываясь вокруг, мы понимаем, что все известные нам земные формы жизни являются именно такими не просто так, а в силу существования на Земле некоторых физических условий, пару из которых мы и рассмотрим далее.

Гравитация


Первым и наиболее явным земным физическим условием является . Чтобы гравитация на другой планете была точно такой же, ей понадобится точно такая же масса и такой же радиус. Чтобы это было возможно, вероятно другая планета должна состоять из тех же элементов, что и Земля. Для этого потребуется также ряд других условий, в результате соблюдения которых вероятность обнаружения такого «клона Земли» стремительно падает. По этой причине, если мы намеренны отыскать все возможные внеземные формы жизни, следует предполагать о возможности их существования на планетах с несколько иной гравитацией. Конечно, для гравитации должен быть определен некоторый диапазон, такой чтобы удерживать атмосферу и при этом на расплющить все живое на планете.

В границах этого диапазона возможны самые различные формы жизни. Прежде всего гравитация влияет на рост живых организмов. Вспоминая самую известную гориллу в мире – Кинг-Конга, следует отметить, что он не выжил бы на Земле, так как умер бы под давлением собственного веса. Причиной этому служит закон квадрата-куба, согласно которому с увеличением тела в два раза, его масса увеличивается в 8 раз. Поэтому если мы рассматриваем планету с пониженной гравитацией – следует ожидать обнаружение форм жизни в крупных размерах.

Также от силы гравитации на планете зависит крепость скелета и мышц. Вспоминая еще один пример из мира животных, а именно самое большое животное – синего кита, отметим, что в случае попадания его на сушу кит задыхается. Однако происходит это не потому, что они задыхаются словно рыбы (киты – млекопитающие, а посему они дышат не жабрами, а легкими, как и люди), а потому, что сила тяжести мешает их легким расширяться. Из этого следует, что в условиях повышенной гравитации человек обладал бы более крепкими костьми, способными удержать массу тела, более крепкими мышцами, способными противодействовать силе тяжести, и меньшим ростом для понижения собственно самой массы тела согласно закону квадрата-куба.

Перечисленные физические характеристики тела, зависящие от гравитации, — это лишь наши представления о влиянии силы тяжести на организм. На самом деле гравитация может определять значительно больший диапазон параметров тела.

Атмосфера

Другим глобальным физическим условием, определяющим форму живых организмов, является атмосфера. Прежде всего наличием атмосферы сознательно сузим круг планет с возможностью жизни, так как ученым не удается представить организмы, способные выживать без вспомогательных элементов атмосферы и при убийственном влиянии космической радиации. Поэтому предположим, что планета с живыми организмами должна обладать атмосферой. Сперва рассмотрим атмосферу с содержанием кислорода, к которому мы все так привыкли.

Рассмотрим к примеру насекомых, размер которых явно ограничен из-за особенностей дыхательной системы. Она не включает легкие и состоит из тоннелей трахей, выходящих наружу в виде отверстий — дыхалец. Подобная тип транспортировки кислорода не позволяет иметь насекомым массу более 100 грамм, так как при больших размерах теряет свою эффективность.

Каменноугольный период (350-300 млн. лет до нашей эры) характеризовался повышенным содержанием кислорода в атмосфере (на 30-35%), и присущие тому времени животные могут Вас удивить. А именно, гигантские дышащие воздухом насекомые. К примеру, стрекоза Meganeura могла иметь размах крыльев более 65-ти см, скорпион Pulmonoscorpius достигать 70-ти см, а многоножка Arthropleura — 2,3 метра в длину.

Таким образом, становится очевидно влияние концентрации кислорода в атмосфере на диапазон различных форм жизни. Кроме того, наличие кислорода в атмосфере не есть твердым условием для существования жизни, так как человечеству известны анаэробы – организмы, способные жить без потребления кислорода. Тогда если влияние кислорода на организмы столь высоко, какова же будет форма жизни на планетах со совершенно другим составом атмосферы? – сложно представить.

Так перед нами возникает немыслимо большой набор форм жизни, которые могут нас ожидать на другой планете, учитывая лишь два перечисленных выше фактора. Если же рассматривать и другие условия, вроде температуры или атмосферного давления, то разнообразие живых организмов выходит за рамки восприятия. Но и в этом случае ученые не боятся делать более смелые предположения, определяемые в альтернативной биохимии:

  • Многие убеждены, что все формы жизни могут существовать лишь при наличии в их составе углерода, так как это наблюдается на Земле. Данное явление в свое время Карл Саган назвала как «углеродный шовинизм». Но на самом деле основным строительным элементом инопланетной жизни может быть совсем не углерод. Среди альтернатив углероду ученые выделяют кремний, азот и фосфор или азот и бор.
  • Фосфор – также один из основных элементов, составляющих живой организм, так как входит в состав нуклеотидов, нуклеиновых кислот (ДНК и РНК) и прочих соединений. Однако, в 2010-м году астробиолог Фелиса Вольф-Саймон обнаружила бактерию, во всех клеточных компонентах которой фосфор заменяется мышьяком, к слову токсичным для всех других организмов.
  • Вода – один из важнейших компонентов для жизни на Земле. Однако, и воду можно заменить иным растворителем, согласно исследованиям ученых, это может быть аммиак, фтороводорот, цианистый водород и даже серная кислота.

Зачем же мы рассматривали вышеописанные возможные формы жизни на других планетах? Дело в том, что с увеличением разнообразия живых организмов размываются границы самого термина жизни, который, к слову, до сих пор не имеет явного определения.

Понятие инопланетной жизни

Так как предметом данной статьи есть не разумные существа, а живые организмы, следует определить понятие «живого». Как оказалось, это достаточно сложная задача и существует более 100 определений жизни. Но, дабы не углубляться в философию, пойдем по следам ученых. Наиболее широкое понятие жизни должны иметь химики и биологи. Исходя из привычных признаков жизни, вроде размножения или питания, к живым существам можно приписать некоторые кристаллы, прионы (инфекционные белки) или вирусы.

Доподлинное определение границы между живым и неживым организмом должно быть сформулировано прежде, чем возникнет вопрос о существовании жизни на других планетах. Биологи считают такой пограничной формой – вирусы. Сами по себе, не взаимодействуя с клетками живых организмов, вирусы не обладают большинством привычных нам характеристик живого организма и представляют из себя лишь частицы биополимеров (комплексы органических молекул). Например, они не имеют обмена веществ, для их дальнейшего размножения потребуется какая-то клетка-хозяин, принадлежащая другому организму.

Таким образом можно условно провести грань между живыми и неживыми организмами проходит через обширный слой вирусов. То есть обнаружение вирусоподобного организма на другой планете может стать как подтверждением существования жизни на других планетах, так и еще одним полезным открытием, однако не подтверждающим указанное предположение.

Согласно вышесказанному, большинство химиков и биологов склоняются к тому, что основным признаком жизни есть репликация ДНК – синтез дочерней молекулы на основе родительской молекулы ДНК. Имея такие взгляды на инопланетную жизнь, мы значительно отдалились от уже избитых образов зеленых (серых) человечков.

Однако проблемы определения объекта как живого организма могут возникнуть не только с вирусами. Учитывая указанное ранее разнообразие возможных видов живых существ, можно представить ситуацию, когда человек столкнется с некоторой инопланетной субстанцией (для простоты представления – размеров порядка человека), и поставит вопрос о жизни этой субстанции, — поиск ответа на этот вопрос может оказаться таким же затруднительным, как и в случае с вирусами. Данная проблема просматривается в произведении Станислава Лема «Солярис».

Внеземная жизнь в Солнечной системе

Kepler — 22b-планета с возможной жизнью

Сегодня критерии поиска жизни на других планетах довольно строгие. Среди них в приоритете: наличие воды, атмосферы, и температурных режимов, схожих с земными. Для обладания указанными характеристиками планета должна находиться в так называемой «обитаемой зоне звезды» — то есть на определенном расстоянии от звезды, в зависимости от типа этой звезды. Среди наиболее популярных можно отметить: Глизе 581 g, Kepler-22 b, Kepler-186 f, Kepler-452 b и другие. Однако, сегодня о наличии жизни на таких планетах можно лишь гадать, так как слетать к ним удастся совсем не скоро, в силу огромного расстояния до них (одна из ближайших Глизе 581 g, до которой 20 световых лет). Поэтому вернемся в нашу Солнечную систему, где на самом деле также есть признаки неземной жизни.

Марс

Согласно критериям существования жизни, некоторые из планет Солнечной системы обладают подходящими условиями. Например, на Марсе был обнаружен сублимирующийся (испаряющийся) – шаг на пути к обнаружению жидкой воды. Кроме того, в атмосфере красной планеты был найден метан – известный продукт жизнедеятельности живых организмов. Таким образом даже на Марсе есть вероятность существования живых организмов, хоть и простейших, в определенных теплых местах с менее агрессивными условиями, вроде полярных шапок.

Европа

Небезызвестный спутник Юпитера – – довольно холодное (-160 °C — -220 °C) небесное тело, покрытое толстым слоем льда. Однако, ряд результатов исследований (движение коры Европы, наличие индуцированных токов в ядре) все больше приводят ученых к мысли о существовании жидкого водного океана под поверхностными льдами. Причем в случае существования, размеры этого океана превышают размеры мирового океана Земли. Разогрев этого жидкого водяного слоя Европы скорее всего происходит посредством гравитационного влияния , которое сжимает и растягивает спутник, вызывая приливы. В результате наблюдения за спутником были также зафиксированы признаки выбросов водяного пара из гейзеров со скоростью примерно 700 м/с на высоту до 200 км. В 2009-м году американским ученым Ричардом Гринбергом было показано, что под поверхностью Европы имеется кислород в объемах, достаточных для существования сложных организмов. Учитывая другие указанные данные о Европе, можно с уверенностью предположить о возможности существования сложных организмов, пусть подобных рыбам, которые обитают ближе ко дну подповерхностного океана, где судя по всему расположены гидротермальные источники.

Энцелад

Наиболее многообещающим местом для обитания живых организмов является спутник Сатурна – . Несколько похожий на Европу, этот спутник все же отличается от всех других космических тел Солнечной системы тем, что на нем обнаружена жидкая вода, углерод, кислород и азот в форме аммиака. Причем результаты зондирования подтверждаются реальными фотографиями огромных фонтанов воды, бьющих из трещин ледяной поверхности Энцелада. Собрав воедино полученные свидетельства, ученые утверждают о наличии подповерхностного океана под южным полюсом Энцелада, температура которого лежит в диапазоне от -45°C до +1°C. Хотя существуют оценки, согласно которым температура океана может достигать даже +90. Даже если температура океана не высока, все же нам известны рыбы, живущие в водах Антарктики при нулевой температуре (Белокровные рыбы).

Помимо этого, данные, полученные аппаратом , и обработанные учеными из института Карнеги, позволили выяснить щелочность среды океана, которая составляет 11-12 pH. Данный показатель является довольно благоприятным для зарождения, а также поддержания жизни.

Есть ли жизнь на других планетах?

Вот мы и подобрались к оценке вероятности существования инопланетной жизни. Все написанное выше несет оптимистичный характер. Исходя из широкого разнообразия земных живых организмов, можно сделать вывод, что даже на самой «суровой» планете-двойнике Земли может возникнуть живой организм, пусть и совсем отличный от привычных для нас. Даже исследуя космические тела Солнечной системы, мы находим закоулки, казалось, мертвого мира, не похожего на Землю, в которых все же существуют благоприятные условия для углеродных форм жизни. Еще сильнее укрепляет наши убеждения о распространенности живого во Вселенной возможность существования не углеродных форм жизни, а неких альтернативных, использующих вместо углерода, воды и других органических веществ некоторые иные вещества, вроде кремния или аммиака. Таким образом допустимые условия для жизни на другой планете значительно расширяются. Умножив это все на размеры Вселенной, конкретнее – на количество планет, получим достаточно высокую вероятность возникновения и поддержания инопланетной жизни.

Есть лишь одна проблема, которая возникает перед астробиологами, равно как и перед всем человечеством – мы не знаем, как возникает жизнь. То есть как и откуда взяться хотя бы простейшим микроорганизмам на других планетах? Вероятность зарождения самой жизни, даже при благоприятных условиях, мы оценить не можем. А потому оценка вероятности существования живых инопланетных организмов крайне затруднительна.

Если переход от химических соединений к живым организмам определить, как естественное биологическое явление, вроде самовольного объединения комплекса органических элементов в живой организм, то вероятность возникновения такого организма высока. В таком случае можно сказать, что на Земле так или иначе появилась бы жизнь, имея она в наличии те органические соединения, которые она имела, и соблюдая те физические условия, которые она соблюдала. Однако, ученые так и не выяснили природу этого перехода и факторов, которые могут на него влиять. Потому среди факторов, влияющих на само возникновение жизни, может быть что угодно, вроде температуры солнечного ветра или расстояния до соседней звездной системы.

Предполагая, что для возникновения и существования жизни в пригодных для жизни условиях требуется лишь время, и никаких более неизученных взаимодействий с внешними силами, можно сказать, что вероятность обнаружить живые организмы в нашей галактике – довольно высока, эта вероятность существует даже в нашей Солнечной системе. Если же рассматривать Вселенную в целом, то исходя из всего вышенаписанного, можно с большой уверенностью сказать, что жизнь на других планетах есть.

NASA прогнозирует, что мы найдем жизнь за пределами нашей планеты, а может, и за пределами нашей Солнечной системы, уже в этом столетии. Но где? Какой будет эта жизнь? Будет ли мудро вступать в контакт с инопланетянами? Поиск жизни будет трудным, но поиск ответов на эти вопросы в теории может быть еще дольше. Перед вами десять пунктов, так или иначе связанных с поисками внеземной жизни.

NASA полагает, что внеземная жизнь будет обнаружена в течение 20 лет

Мэтт Маунтин, директор Научного института космического телескопа в Балтиморе, говорит следующее:

«Представьте себе момент, когда мир просыпается и человеческая раса понимает, что больше не одинока в пространстве и времени. В наших силах совершить открытие, которое изменит мир навсегда».

Используя наземные и космические технологии, ученые NASA прогнозируют, что мы найдем внеземную жизнь в галактике Млечный Путь в течение ближайших 20 лет. Запущенный в 2009 году космический телескоп Кеплер помог ученым найти тысячи экзопланет (планет за пределами Солнечной системы). Кеплер обнаруживает планету, когда она проходит перед своей звездой, вызывая небольшое падение яркости звезды.

Исходя из данных Кеплера, ученые NASA считают, что только в нашей галактике 100 миллионов планет могут быть домом для внеземной жизни. Но только с началом работы космического телескопа Джеймса Вебба (запуск запланирован на 2018 год), мы получим первую возможность косвенно обнаруживать жизнь на других планетах. Телескоп Вебба будет искать газы в атмосферах планет, генерируемые жизнью. Конечная цель - найти Землю 2.0, близнеца нашей собственной планеты.

Внеземная жизнь может не быть разумной

Телескоп Вебба и его преемники будут искать биосигнатуры в атмосферах экзопланет, а именно: молекулярную воду, кислород и углекислый газ. Но даже если биосигнатуры будут обнаружены, они не сообщат нам, разумна ли жизнь на экзопланете. Инопланетная жизнь может быть представлена одноклеточными организмами вроде амеб, а не сложными существами, которые могут общаться с нами.

Мы также ограничены в наших поисках жизни своими предрассудками и недостатком воображения. Мы предполагаем, что должна существовать жизнь на углеродной основе вроде нас, а ее разум должен быть похож на наш. Объясняя этот сбой в творческом мышлении, Кэролин Порко из Института космических наук говорит следующее: «Ученые не начинают думать о совершенно безумных и невероятных вещах, пока некоторые обстоятельства не заставят их».

Другие ученые вроде Питера Уорда считают, что разумная инопланетная жизнь будет недолговечна. Уорд допускает, что другие виды могут претерпеть глобальное потепление, перенаселение, голод и конечный хаос, который уничтожит цивилизацию. Нас ждет то же самое, считает он.

В настоящее время на Марсе слишком холодно, чтобы могла существовать жидкая вода и поддерживаться жизнь. Но марсоходы NASA - «Оппортьюнити» и «Кьюриосити», анализирующие породы Марса - показали, что четыре миллиарда лет назад на планете была пресная вода и грязь, в которой могла процветать жизнь.

Другой возможный источник воды и жизни - третий по высоте вулкан Марса Arsia Mons. 210 миллионов лет назад этот вулкан извергался под огромным ледником. Тепло вулкана заставляло лед таять, образуя озера в леднике, словно жидкие пузырьки в частично замерзших кубиках льда. Эти озера, возможно, существовали достаточно долго для того, чтобы в них сформировалась микробная жизнь.

Вполне возможно, что некоторые простейшие организмы Земли смогут выжить на Марсе сегодня. Метаногены, например, используют водород и диоксид углерода для производства метана, им не нужен кислород, органические питательные вещества или свет. Они способы переживать перепады температур вроде марсианских. Поэтому когда в 2004 году ученые обнаружили метан в атмосфере Марса, они допустили, что метаногены уже обитают под поверхностью планеты.

Когда мы отправимся на Марс, мы можем загрязнить окружающую среду планеты микроорганизмами с Земли. Это беспокоит ученых, поскольку может усложнить задачу поиска форм жизни на Марсе.

NASA планирует запустить миссию в 2020-х годах на Европу, один из спутников Юпитера. Среди основных задач миссии - определить, обитаема ли поверхность луны, а также определить места, в которых смогут приземлиться космические корабли будущего.

В дополнение к этому, NASA планирует искать жизнь (возможно, разумную) под толстым слоем льда Европы. В интервью The Guardian ведущий ученый NASA доктор Эллен Стофан сказала следующее: «Мы знаем, что под этой ледяной коркой есть океан. Водяная пена выходит из трещин в южной полярной области. Есть оранжевые разводы по всей поверхности. Что это, в конце концов?».

Космический аппарат, который отправится на Европу, сделает несколько облетов вокруг луны или останется на ее орбите, возможно, изучит перья пены в южном регионе. Это позволит ученым собрать образцы внутренних слоев Европы без рискованной и дорогой посадки космического аппарата. Но любая миссия должна предусмотреть защиту корабля и его инструментов от радиоактивной окружающей среды. Также NASA хочет, чтобы мы не загрязняли Европу земными организмами.

До сих пор ученые были технологически ограничены в поисках жизни за пределами нашей Солнечной системы. Они могли искать только экзопланеты. Но вот физики из Университета Техаса считают, что нашли способ обнаружения экзолун (лун на орбите экзопланет) через радиоволны. Этот метод поиска может значительно увеличить количество потенциально обитаемых тел, на которых мы можем найти внеземную жизнь.

Используя знания о радиоволнах, излучаемых в ходе взаимодействия между магнитным полем Юпитера и его луной Ио, эти ученые смогли экстраполировать формулы для поиска подобных излучений экзолунами. Они также полагают, что альфвеновские волны (рябь плазмы, вызванная взаимодействием магнитного поля планеты и ее луной) могут также помочь обнаружить экзолуны.

В нашей Солнечной системе луны типа Европы и Энцелада обладают потенциалом для поддержания жизни в зависимости от их удаленности от Солнца, атмосферы и возможного существования воды. Но по мере того, как наши телескопы становятся все мощнее и дальновиднее, ученые надеются изучать подобные луны в других системах.

В настоящее время есть две экзопланеты с подходящими на роль обитаемых экзолунами: Gliese 876b (примерно 15 световых лет от Земли) и Эпсилон Эридана b (примерно 11 световых лет от Земли). Обе планеты - газовые гиганты, как и большинство обнаруженных нами экзопланет, но находятся в потенциально обитаемых зонах. Любые экзолуны у таких планет тоже могут иметь потенциал для поддержания жизни.

До сих пор ученые искали внеземную жизнь, глядя на экзопланеты, богатые кислородом, углекислым газом или метаном. Но поскольку телескоп Вебба сможет обнаружить разрушающие озон хлорфторуглероды, ученые предлагают искать разумную внеземную жизнь по таким «промышленным» загрязнениям.

В то время как мы надеемся обнаружить внеземную цивилизацию, которая все еще жива, вполне вероятно, что мы найдем вымершую культуру, которая уничтожила сама себя. Ученые считают, что лучший способ узнать, могла ли на планете быть цивилизация, - это найти долгоживущие загрязнители (которые пребывают в атмосфере десятки тысяч лет) и краткоживущие загрязнители (которые исчезают лет за десять). Если телескоп Вебба обнаружит только долгоживущие загрязняющие вещества, высок шанс того, что цивилизация исчезла.

У этого метода есть свои ограничения. Телескоп Вебба пока может обнаружить только загрязнители на экзопланетах, вращающихся вокруг белых карликов (остатков мертвой звезды размером с наше Солнце). Но мертвые звезды означают мертвые цивилизации, поэтому поиск активно загрязняющей окружающую среду жизни, возможно, будет отложен, пока наши технологии не станут более продвинутыми.

Чтобы определить, какие планеты могут поддерживать разумную жизнь, ученые, как правило, строят свои компьютерные модели на основе атмосферы планеты в потенциально обитаемой зоне. Последние исследования показали, что эти модели также могут включать влияние крупных жидких океанов.

Для примера возьмем нашу собственную Солнечную систему. Земля обладает стабильной средой, которая поддерживает жизнь, но Марс - который находится на внешней границе потенциально обитаемой зоны - замерзшая планета. Температура на поверхности Марса может колебаться в пределах 100 градусов по Цельсию. Есть и Венера, которая находится в пределах обитаемой зоны и нестерпимо горяча. Ни одна из планет не является хорошим кандидатом на поддержку разумной жизни, хотя обе они могут быть населены микроорганизмами, способными выживать в чрезвычайных условиях.

В отличие от Земли, ни Марс, ни Венера не обладают жидким океаном. По словам Дэвида Стивенса из Университета Восточной Англии, «океаны обладают огромным потенциалом для управления климатом. Они полезны, поскольку позволяют температуре поверхности крайне медленно реагировать на сезонные изменения солнечного отопления. И они помогают обеспечивать изменения температуры по всей планете в допустимых пределах».

Стивенс абсолютно уверен, что нам нужно включать возможные океаны в модели планет с потенциальной жизнью, тем самым расширив диапазон поиска.

Экзопланеты с колеблющимися осями могут поддерживать жизнь там, где планеты с фиксированной осью вроде Земли не могут. Это потому, что такие «миры-волчки» имеют другие отношения с планетами вокруг них.

Земля и ее планетарные соседи обращаются вокруг Солнца в той же плоскости. Но миры-волчки и их соседние планеты вращаются под углами, оказывая влияние на орбиты друг друга так, что первые иногда могут вращаться полюсом, обращенным к звезде.

Такие миры чаще, чем планеты с фиксированной осью, будут обладать жидкой водой на поверхности. Это потому, что тепло от материнской звезды будет равномерно распределяться на поверхности нестабильного мира, особенно если он будет обращен к звезде полюсом. Ледяные шапки планеты будут таять быстро, образуя мировой океан, а где океан - там потенциальная жизнь.

Чаще всего астрономы ищут жизнь на экзопланетах, которые находятся в пределах обитаемой зоны своей звезды. Но некоторые «эксцентричные» экзопланеты остаются в обитаемой зоне только часть времени. Будучи вне зоны, они могут сильно плавиться или замерзать.

Даже при таких условиях эти планеты могут поддерживать жизнь. Ученые указывают на то, что некоторые микроскопические формы жизни на Земле могут выживать в экстремальных условиях - как на Земле, так и в космосе - бактерии, лишайники и споры. Это говорит о том, что обитаемая зона звезды может простираться гораздо дальше, чем считается. Только нам придется смириться с тем, что внеземная жизнь может не только процветать, как здесь, на Земле, но и терпеть суровые условия, где, казалось, никакая жизнь быть не может.

NASA предпринимает агрессивный подход к поиску внеземной жизни в нашей Вселенной. Проект поиска внеземного разума SETI тоже становится все более амбициозным в своих попытках контактировать с внеземными цивилизациями. SETI хочет выйти за рамки простого поиска и отслеживания внеземных сигналов и начать активно отправлять сообщения в космос, чтобы определить наше положение относительно остальных.

Но контакт с разумной инопланетной жизнью может представлять опасность, с которой мы можем не справиться. Стивен Хокинг предупреждал, что доминирующая цивилизация, скорее всего, использует свою мощь, чтобы покорить нас. Есть также мнение, что NASA и SETI преступают этические границы. Нейропсихолог Габриэль де ла Торре задается вопросом:

«Может ли такое решение быть принято всей планетой? Что случится, если кто-то получит наш сигнал? Готовы ли мы к такой форме связи?».

Де ла Торре считает, что широкой общественности в настоящее время не хватает знаний и подготовки, необходимых для взаимодействия с разумными инопланетянами. Точка зрения большинства людей также серьезно подвержена религиозному влиянию.

Поиск внеземной жизни не так прост, как кажется

Технологии, которые мы используем для поиска внеземной жизни, значительно улучшились, но поиск еще далеко не так прост, как хотелось бы. К примеру, биосигнатуры обычно считаются свидетельством жизни, прошлой или насущной. Но ученые обнаружили безжизненные планеты с безжизненными лунами, которые обладают такими же биосигнатурами, в которых мы обычно видим признаки жизни. Это означает, что наши текущие методы обнаружения жизни зачастую дают сбой.

Кроме того, существование жизни на других планетах может быть гораздо более невероятным, чем мы думали. Красные звезды-карлики, которые меньше и холоднее нашего Солнца, являются наиболее распространенными звездами в нашей Вселенной.

Но, по последней информации, экзопланеты в обитаемых зонах красных карликов могут обладать разрушенной суровыми погодными условиями атмосферой. Эти и многие другие проблемы существенно усложняют поиск внеземной жизни. А ведь так хочется узнать, одиноки ли мы во Вселенной.

Этот вопрос волнует умы ученых уже более четырех веков. Существование жизни на других планетах.

Гипотезы существования жизни на других планетах

Первым высказал мысль о существовании жизни на других планетах , и множестве обитаемых миров знаменитый итальянский ученый Джордано Бруно. Он первым рассмотрел в далеких звездах образования, подобные Солнцу.
Существуют бесчисленные Солнца, бесчисленные Земли, которые кружатся вокруг своих Солнц, подобно тому, как наши семь планет кружатся вокруг нашего Солнца.
- писал он. 17 февраля 1600 года Джордано Бруно был сожжен на костре. Это было доводом в споре всесильной тогда католической церкви против смелого мыслителя. Но еще никому никогда не удалось сжечь на костре идею. И до сих пор длится этот спор: и о множественности обитаемых миров, и о возможности связи или встречи с представителями неземного разума.

Гипотеза Канта - Лапласа

В спор этот вовлечено множество областей знания. Например, космогония. Пока господствовала изящная гипотеза происхождения Канта - Лапласа , даже и вопрос не вставал об исключительности планетной системы, однако эта гипотеза была забракована математиками. Иммануил Кант - один из основоположников гипотезы существования солнечной системы.

Гипотеза Джинса

На смену ей явилась мрачная и пессимистическая гипотеза Джинса , делающая нашу Солнечную систему почти уникальным явлением. И сразу упали шансы на космическую встречу с чужой культурой. Впрочем, гипотезу Джинса постигла та же участь - и она не прошла проверки математикой.

Гипотеза Агреста

Сегодня наличие крупных планет у некоторых звезд подтверждено непосредственными наблюдениями. И снова оптимистичнее стал взгляд ученых на возможность космических связей. Например гипотеза Агреста о прилете иноземных скитальцев, якобы уже имевшем место в годы ранней юности человечества. Данные истории и археологии, этнографии и петрографии были привлечены им для подтверждения своей точки зрения.

Гипотеза И. С. Шкловского

Казались математически безукоризненными рассуждение профессора И. С. Шкловского об искусственном происхождении спутников Марса, но и они не выдержавшее математической проверки, проведенной С. Вашковьяк. Нет, за прошедшие четыреста лет споро том, Существует ли жизнь на других планетах, не только не утихает, но, наоборот, становится все более горячим и интересным. Профессор И. С. Шкловский - основоположник гипотезы об искусственном происхождении спутников Марса.

Новый источник радиоволн СТА-102

Вот интереснейшие факты, которые горячо обсуждались учеными и на страницах печати, и на специальных встречах. В Бюракане (Армения) проходили всесоюзные совещания по проблеме Внеземные цивилизации . Что же это за факты, привлекшие внимание ученых? В 1960 году радиоастрономы Калифорнийского технологического института обнаружили на небе новый источник радиоволн . Источник этот был не очень сильным, но странным по характеру. Его занесли в каталог под обозначением СТА-102 . Изучением его странностей занялись ученые многих стран. Заинтересовалась им и группа московских радиоастрономов под руководством Г. Б. Шоломицкого. Сутки за сутками продолжалось наблюдение за точкой неба, откуда доносились на Землю до предела ослабленные расстоянием таинственные радиоволны. Плоды этих наблюдений были сведены в графики, опубликованные затем для общего сведения. Графики оказались крайне интересными и совершенно необычными.
Небо как источник новых радиоволн согласно данным радиоастрономов Калифорнийского технологического института. На первом была изображена кривая, показывающая, что интенсивность работы загадочной космической радиостанции изменяется. Сначала она работает на полную мощность. Затем начинает ослабевать, достигает определенного минимума и некоторое время работает на нем. Затем ее мощность снова вырастает до первоначальной величины. Период полного цикла этого изменения равен ста дням. Это первая особенность радиоизлучения объекта СТА-102. Но не единственная. На втором графике был изображен радиоспектр СТА-102. По вертикали отложена в соответствующих единицах интенсивность радиоизлучения, по горизонтали - длина радиоволн. Здесь видно отчетливо выраженный пик мощности на волнах длиной около 30 сантиметров. Ученые прежде не встречали космические радиоисточники, имеющие такую кривую радиоспектра. На этом же графике был изображен радиоспектр обычного космического источника, находящегося в созвездии Девы. Они были абсолютно разные.

Источник космического радиоизлучения СТА-21

В 1963 году американские ученые обнаружили еще один, столь же странный источник космического радиоизлучения , получивший обозначение СТА-21 . Его радиоспектр также был изображен на графике. Он оказался подобен спектру СТА-102. Сдвиг между ними может быть отнесен за счет так называемого красного смещения, зависящего от разницы скоростей удаления от нас обоих рассматриваемых объектов. И поэтому СТА-21 тоже привлек всеобщее внимание исследователей. Надо отметить и еще одну деталь. Дело в том, что в космическом пространстве стоит непрерывный радиошум. Самые различные природные процессы - от ударов молний в атмосферах планет до разлетающихся после взрывов сверхновых звезд облаков газа - порождают эти шумы.
Удар молнии порождает радиошум в космическом пространстве. Минимум радиошумов космоса приходится на радиоволны длиной в 7-15 сантиметров. Максимумы радиоизлучения загадочных объектов СТА-102, СТА-21 почти совпадают с этим минимумом. А ведь если бы существовала жизнь на других планетах, именно на волны этого минимума настроили бы свои передатчики разумные существа, если бы встала перед ними задача создания межзвездной радиосвязи. Вот эти-то странности неведомых космических радиоисточников и позволили ученому астроному Н. С. Кардашеву высказать предположение, что эти загадочные объекты являются, возможно, радиошумами, созданными разумными существами, достигшими чрезвычайно высокого уровня развития. Никакого другого, более естественного явления или процесса, происходящего в неодушевленной Вселенной, который мог бы дать радиоизлучение, подобное тому, что излучают СТА-102 и СТА-21, Кардашев не нашел. Свою гипотезу он опубликовал в «Астрономическом журнале», издаваемом Академией наук СССР (выпуск 2-й, 1964 год). Трудно сказать что-нибудь о расстоянии до объектов СТА-102 и СТА-21, тем более, что до самого последнего времени они не были обнаружены с помощью оптических методов. Только с помощью гигантского паломарского телескопа американским ученым удалось сфотографировать оптический спектр звездочки, отождествляемой с объектом СТА-102. По величине красного смещения ученые пришли к выводу, что это - сверхзвезда, находящаяся от нас на расстоянии в миллиарды световых лет, однако отождествление объекта СТА-102 с этой сверхзвездой, отнюдь, не обязательно. Возможно, что просто два астрономических объекта расположены в одном направлении от нас. И все же, и СТА-102, и СТА-21, безусловно, находятся от нас на расстоянии в тысячи и тысячи световых лет. Поражает воображение гигантская мощность космических радиомаяков, раз уж мы рассматриваем гипотезу об их искусственном характере. Если принять, что объект СТА-102 находится от нас на расстоянии в несколько миллиардов световых лет, то мощность радиоизлучения, учитывая его широкий спектр и то, что оно не носит узко направленного характера, соизмерима с мощностью целой звездной системы, подобной нашей Галактике. Если СТА-102 находится несравнимо ближе, то для питания ее передатчика было бы достаточно энергии одного Солнца. Сейчас мощность всех электростанций земного шара составляет около 4 миллиардов киловатт. Количество производимой человечеством энергии растет на 3-4 процента в год. Если этот темп роста не изменится, то уже через 3200 лет человечество будет производить столько же энергии, сколько излучает Солнце. Значит, это человечество уже сможет зажечь радиомаяк для посылки сигналов другим разумным существам на десятки тысяч световых лет в другой конец нашей Галактики.

Ученый Ф. Дрейк о жизни на других планетах

В 1967 году американский ученый Ф. Дрейк в течение трех месяцев пытался с помощью радиотелескопа уловить сигналы разумных существ, которые могли бы населять планеты ближайших звезд. Получить такие сигналы ученому не удалось. Впрочем, это его не удивило. Он остроумно заметил, что существование другого мира, населенного разумными существами на расстоянии всего в 11 световых лет от Земли, свидетельствовало бы о крайней перенаселенности космоса. В начале 1973 года американское Национальное управление по аэронавтике и исследованиям космического пространства опубликовало сообщение о намерении всерьез заняться изучением межзвездной связи. Предполагается построить для этой цели гигантское радиоухо , составленное из стометровых дисков, которые образуют круг диаметром примерно в 5 километров. Радиотелескоп, который намечается создать при этом, будет в 4 миллиона раз чувствительнее того радиотелескопа, которым прежде пользовался для прослушивания космоса Ф. Дрейк. Что ж, может быть, на этот раз мы услышим сигналы разумных существ.

Радиопередача разумных существ из космоса

Теперь попробуем подойти к вопросу с другой стороны: насколько вероятно ожидать радиопередачу разумных существ из космоса ? Скажем сразу: при ответе на этот вопрос нам встретится целый ряд сомнительных и не очень точных положений.
Радиопередача разумных существ из космоса. Прежде всего, откуда возможно ожидать сигналы разумных существ? По почти единодушному мнению ученых, Земля - единственный носитель разумной жизни в нашей планетной системе. Но, во всяком случае, недолго придется ожидать проверки этой точки зрения: уже в течение этого века и в самом начале следующего экспедициями ученых будут достаточно подробно изучены все миры нашего Солнца. Пока ничего похожего на сигналы разумных существ с планет Солнечной системы принять не удалось. Даже очень загадочное радиоизлучение Юпитера, по всей вероятности, имеет чисто природное происхождение. С другой стороны, вряд ли возможно установление связи с разумными существами из других Галактик. Например, расстояние до одной из ближайших к нам Галактик - знаменитой Туманности Андромеды составляет около двух миллионов световых лет. Землян не устроит разговор, при котором ответ на поставленный вопрос можно будет получить через 4 миллиона лет. Слишком много событий вместит время от вопроса до ответа... Значит, братьев по разуму целесообразно искать только в ближайшем к нам участке нашей Галактики. По подсчетам ученых, в Галактике около 150 миллиардов звезд. Далеко не каждая подходит для того, чтобы создать условия для обитаемой планеты. Далеко не все планеты могут стать убежищем жизни - одни могут оказаться слишком близко к своей звезде, и ее пламя сожжет все живое, другие, наоборот, замерзнут во мраке космоса. И все же, по подсчетам американского ученого Доуэла, в нашей Галактике должно быть около 640 миллионов планет, подобных Земле. При условии, что они распределены равномерно, расстояние между такими планетами должно составлять около 27 световых лет. Значит, в радиусе 100 световых лет от Земли должно находиться около 50 планет такого же типа. Что ж, это очень оптимистичный результат, дающий все шансы на возможность радиосвязи между соседними мирами.

История развития планеты Земля

На всех ли из этих планет возникла жизнь? Это не такой простой вопрос, как кажется с первого взгляда. Вспомним геологическую историю развития планеты Земля . Прошло несколько миллиардов лет, прежде чем появились на ее поверхности первые простейшие существа.
История развития планеты Земля. Ориентировочно жизнь существует на нашей планете всего около 3 миллиардов лет. Почему же в течение длинного ряда предшествовавших миллионолетий не возникла жизнь на Земле? И на всех ли подобных Земле планетах обязателен такой же продолжительности безжизненный период? Или он может быть больше? Или меньше? В настоящее время биохимики считают, что живое вещество неизбежно должно возникать в больших количествах в условиях, аналогичных условиям первобытной Земли. Можно предполагать, что на всех подобных других планетах существует жизнь. Но этот вопрос особенно темен и неясен: какой период должна существовать жизнь, чтобы вырос и расцвел ее удивительный цветок - разум? И обязательно ли развитие живого должно приводить к появлению разума? Пока что естествоиспытатели не имеют даже приблизительных гипотез на этот счет. Но относительно того, существует ли жизнь на других планетах, есть гипотезы, что цивилизация на некоторых обитаемых планетах находится на несравненно более высоком уровне развития, чем наша.

Close