Современным астрономам известно около трех с половиной тысяч экзопланет, которые находятся от нас на расстоянии от четырех до двадцати восьми тысяч световых лет. Некоторые из них очень . Попасть на какую-нибудь из них в обозримом будущем будет сложно - разве что человечество совершит огромный технологический скачок. Тем не менее, экзопланеты уже сегодня представляют собой огромный интерес с точки зрения астрохимии. Об этом - наш новый материал, написанный в партнерстве с Уральским федеральным университетом .

Основную часть вещества Вселенной (если говорить о барионном веществе) составляет водород - около 75 процентов. На втором месте идет гелий (около 23 процентов). Однако в космосе можно найти самые разнообразные химические элементы и даже сложные молекулярные соединения, включая органические. Изучением процессов образования и взаимодействия химических соединений в космосе занимается астрохимия . Представителям этой специальности очень интересно исследовать экзопланеты, потому что на них могут реализоваться самые разные сценарии, которые приведут к появлению необычных соединений.

Радуга на службе у астрономов

Основным инструментом получения информации о химическом составе отдаленных объектов является спектроскопия . Она использует тот факт, что атомы химических элементов (или молекулы соединений) могут излучать или поглощать свет только на определенных частотах, отвечающих переходам системы между различными уровнями энергии. В результате формируется спектр излучения (или поглощения), по которому можно однозначно определить вещество. Это как отпечатки пальцев, только для атомов.

Наглядным примером разложения света в спектр является радуга. Нам переходы от одного цвета к другому кажутся плавными и непрерывными, а на самом деле некоторых цветов в радуге нет, потому что определенные длины волн поглощаются содержащимися в Солнце водородом и гелием. Кстати, гелий впервые открыли именно по наблюдению за спектром Солнца (поэтому он и называется «гелий», от др.-греч. ἥλιος - «солнце»), а в лаборатории его выделили только через 27 лет. Это был первый успешный пример использования спектроскопии для изучения звезд.

Фраунгоферовы линии поглощения на фоне непрерывного спектра фотосферы Солнца.

Wikimedia commons


В простейшем случае атома водорода спектр излучения представляет собой серию линий, отвечающих переходам между уровнями с различными значениями главного квантового числа n (эта картина хорошо описывается формулой Ридберга). Самой известной и удобной для наблюдений является линия Бальмера Hα, имеющая длину волны 656 нанометров и лежащая в области видимого спектра. Например, на этой линии астрономы наблюдают за далекими галактиками и распознают облака молекулярного газа, которые в большинстве своем как раз состоят из водорода. Следующие серии линий (Пашена, Брэкета, Пфунда и так далее) целиком лежат в инфракрасном диапазоне, а серия Лаймана расположена в области ультрафиолетового излучения. Это несколько усложняет наблюдения.

В то же время у молекул сложных соединений есть другой способ излучать кванты света, в каком-то смысле даже более простой. Связан он с тем, что вращательная энергия молекулы квантуется, что также позволяет им излучать в линиях (кроме того, они могут излучать и  непрерывный спектр). Энергия таких квантов света не очень большая, поэтому их частота лежит уже в радиодиапазоне. Один из самых простых вращательных спектров принадлежит молекуле угарного газа CO, по ней астрономы тоже часто распознают облака холодного газа, когда не могут разглядеть в них водород. Методы радиоастрономии позволили найти в молекулярных облаках также метанол, этанол, формальдегид, синильную и муравьиную кислоту, а также другие элементы. Например, именно с помощью радиотелескопа ученые алкоголь в хвосте кометы Лавджоя.

Что можно найти в космосе

Проще всего методы спектроскопии применять для изучения химического состава звезд. В этом случае астрономы исследуют спектры поглощения, а не излучения элементов. В самом деле, свет от них легко наблюдать, особенно в видимом диапазоне. Правда, химический состав звезд сам по себе обычно не очень интересен: по большей части они состоят из водорода и гелия с небольшой примесью тяжелых элементов.

Более тяжелые элементы образуются во вспышках сверхновых, и их тоже можно наблюдать. Например, некоторые ученые утверждают, что после недавно слияния двух нейтронных звезд должны были образоваться огромные количества золота, платины и других элементов из последних строк таблицы Менделеева. Но так или иначе, очень сложные или органические соединения в звездах существовать не могут, поскольку они обязательно распадаются из-за больших температур.

Другое дело - облака холодного межзвездного газа. Они очень сильно разрежены и излучают гораздо слабее, чем звезды, зато сами по себе гораздо больше. И состав у них более интересный. В них можно найти огромное число самых разных молекул - начиная от простых двухатомных и заканчивая относительно сложными многоатомными органическими соединениями. Среди сложных молекул особенно стоит выделить «пребиотические» соединения, например, аминоацетонитрил , который может участвовать в образовании глицина, простейшей аминокислоты. Некоторые ученые предполагают, что в молекулярных облаках может образоваться и рибоза, один из основных кирпичиков органической жизни. Если такие соединения попадут в благоприятные условия, это уже будет ступенькой для возникновения жизни.

Изображение туманности Ориона M42, полученное Коуровской астрономической обсерваторией УрФУ. Красный цвет - это результат рекомбинации в линии излучения Hα на длине волны 656,3 нанометра.

Чуть ближе к планетам

К сожалению, для определения химического состава экзопланет метод спектроскопии применить сложно. Все-таки для этого нужно зарегистрировать свет от них, а звезда, вокруг которой вращается планета, мешает это сделать, поскольку она светит намного ярче. Пытаться наблюдать за такой системой - все равно что смотреть на свет спички на фоне прожектора.

Тем не менее, некоторую информацию об экзопланете можно получить, не измеряя спектр ее излучения напрямую. Хитрость заключается в следующем. Если у планеты есть атмосфера, она должна поглощать часть излучения звезды, причем в разных спектральных диапазонах по-разному. Грубо говоря, на одной длине волны планета будет казаться чуть меньше, а на другой длине - чуть больше. Это позволяет строить предположения о свойствах атмосферы, в частности, о ее химическом составе. Такой способ наблюдений особенно хорошо работает на горячих, близко расположенных к звездам планетах, потому что их радиус проще измерять.

Кроме того, химический состав планеты должен быть связан с составом газопылевого облака, из которого она образовалась. Например, в облаках с большим отношением концентраций атомов углерода к атомам кислорода образующиеся планеты будут состоять преимущественно из карбонатов. С другой стороны, химический состав звезды, образовавшейся из такого облака, также должен отражать его состав. Это позволяет строить некоторые предположения, основываясь на изучении спектра одной только звезды. Так, астрономы из Йельского университета проанализировали данные о химическом составе 850 звезд и обнаружили, что в 60 процентах систем концентрации магния и кремния в звезде указывают на то, что рядом с ней могут находиться каменистые планеты, похожие на Землю. В оставшихся 40 процентах химический состав звезд говорит нам о том, что состав планет вокруг них должен существенно отличаться от земного.

Вообще говоря, в последнее время прямая спектроскопия особенно горячих планет на фоне тусклых звезд все-таки стала возможна благодаря возросшей точности измерительных приборов. В этом случае уже можно искать в их свете следы различных химических элементов и сложных соединений. Например, с помощью ИК-спектрографа CONICA, установленного на телескопе VLT и объединенного с системой адаптивной оптики NAOS, ученым удалось измерить спектр экзопланеты HR 8799 c, которая вращается вокруг белого карлика и разогрета так сильно, что сама излучает свет. В частности, из анализа ее спектра следовало, что в атмосфере планеты содержится меньше, чем ожидалось, метана и угарного газа. Также совсем недавно астрономы измерили спектр другого «горячего юпитера», в его атмосфере оксид титана. Тем не менее, непосредственные измерения спектра менее горячих каменистых планет (на которых существование жизни более вероятно) до сих пор представляет большую сложность.


Изображение системы HR 8799. Планета HR 8799 c находится в правом верхнем углу

Jason Wang et al / NASA NExSS, W. M. Keck Observatory


Состав планеты можно также определить косвенно, рассчитав ее плотность. Для этого нужно знать радиус и массу планеты. Массу можно найти, наблюдая за гравитационным взаимодействием планеты со звездой или другими планетами, а радиус оценить по изменению блеска звезды при прохождении планеты по ее диску. Очевидно, газовые планеты должны иметь меньшую плотность по сравнению с каменистыми. Например, средняя плотность Земли равна примерно 5,5 грамма на кубический сантиметр, и для поиска обитаемых планет астрономы ориентируются именно на это значение. В то же время плотность «самого рыхлого горячего юпитера» составляет 0,1 грамма на кубический сантиметр.


«Невозможные» соединения

С другой стороны, экзопланеты можно изучать и вовсе не выходя из лаборатории, как бы странно это ни звучало. Речь идет о моделировании (в основном численном) химических и физических процессов, которые должны на них происходить. Из-за того что условия на экзопланетах могут быть самые экзотические (простите за каламбур), вещества на них могут образоваться тоже самые необычные, «невозможные» в привычных для нас условиях.

Большинство открытых экзопланет относится к «горячим юпитерам» - сильно разогретым из-за небольшого расстояния до звезды газовым гигантам. Конечно, это не обязательно означает, что такие планеты преобладают в звездных системах, просто их легко найти. Температура атмосферы таких гигантов может превышать тысячу градусов по Цельсию, и состоит она в основном из паров силикатов и железа (при такой температуре оно начинает испаряться, но еще не кипит). В то же время, давление внутри этих планет должно достигать огромных значений, при которых водород и другие привычные для нас газы переходят в твердые агрегатные состояния. Эксперименты по моделированию подобных экстремальных условий проводятся давно, однако впервые металлический водород только в январе этого года.

С другой стороны, в недрах каменистых планет также могут достигаться большие давления и температуры, а «зоопарк» химических элементов там может быть даже больше. Например, по некоторым оценкам, давление внутри каменистых планет с массами в несколько земных масс может достигать значений до 30 миллионов атмосфер (внутри Земли давление не превышает четырех миллионов атмосфер). С помощью компьютерного моделирования удалось выяснить , что в таких условиях начинают образовываться экзотические соединения магния, кремния и кислорода (которых в составе каменистых планет должно быть много). Например, при давлениях более 20 миллионов атмосфер стабильными становится не только привычный для нас оксид кремния SiO 2 , но и «невозможные» SiO и SiO 3 . Также интересно, что в недрах особенно массивных планет (до 20 масс Земли) может образоваться MgSi 3 O 12 - оксид, обладающий свойствами электрического проводника.

Нестандартные условия можно моделировать не только на компьютере, но и в лаборатории, пусть и не для такого большого диапазона давлений и температур. С помощью алмазной наковальни можно получить давления до 10 миллионов атмосфер, как раз соответствующие условиям в недрах планет, а разогреть образец до высоких температур можно лазером. Эксперименты по моделированию таких условий действительно активно проводятся в последнее время. Например, в 2015 году группа ученых, в состав которой входили российские исследователи, экспериментально наблюдали образование пероксида магния MgO 2 уже при давлениях около 1,6 тысяч атмосфер и температурах больше двух тысяч градусов Цельсия. Подробно об исследованиях поведения вещества при больших давлениях вы можете прочитать в .


Рентгеновская спектроскопия образца, состоящего из атомов магния и кислорода, при давлении около десяти тысяч атмосфер и температуре около двух тысяч Кельвин. Пунктиром выделена область с повышенным содержанием кислорода.

S. Lobanov et al / Scientific Reports

***

В УрФУ есть группа ученых, которые занимаются изучением протопланетного вещества в дальнем космосе и Солнечной системе. Мы попросили ведущего специалиста Коуровской астрономической обсерватории УрФУ Вадима Крушинского более подробно рассказать об изучении экзопланет.

N +1: Зачем мы изучаем экзопланеты?

Вадим Крушинский: Еще 25 лет назад нам было известно о существовании единственной планетной системы - Солнечной. Теперь же мы уверены в том, что планеты есть у огромного числа звезд, возможно, почти у каждой звезды во Вселенной. Прогресс технологий получения и обработки данных привел к тому, что найти свою экзопланету может даже продвинутый любитель астрономии. Открытие очередного «горячего юпитера» - это открытие целой планетной системы, просто мы видим только самую заметную ее часть. Планеты меньшего размера или находящиеся дальше от родительской звезды открываются гораздо реже, это эффект наблюдательной селекции.

Вадим Крушинский в составе группы ученых Уральского федерального университета работает над проектом по исследованию протопланетного вещества в дальнем космосе, Солнечной системе и на Земле.

Это один из шести прорывных научных проектов университета, им занимается стратегическая академическая единица (САЕ) - Институт естественных наук и математики УрФУ - вместе с академическими и индустриальными партнерами из России и других стран. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

Единичный эксперимент не позволяет делать выводы о наблюдаемом явлении. Эксперимент должен быть повторен многократно и независимо. Каждая открытая экзопланетная система - это отдельный независимый эксперимент. И чем больше их известно, тем надежнее прослеживаются общие законы происхождения и эволюции планетных систем. Нам необходимо набирать статистику!

Что же можно узнать об экзопланетах, наблюдая за ними с таких больших расстояний?

Прежде всего нужно определить свойства родительской звезды. Это позволяет вычислить размеры планет, их массу и радиусы орбит. Зная светимость родительской звезды и радиус орбиты, можно оценить температуру поверхности экзопланеты. Кроме того, атмосферы планет имеют разную прозрачность в разных спектральных диапазонах (об этом писал еще Ломоносов). Для наблюдателя это выглядит как разный диаметр планеты при наблюдении в разных фильтрах. Это позволяет обнаружить атмосферу и оценить ее толщину и плотность. Свет родительской звезды, прошедший через атмосферу планеты во время транзита, несет информацию о составе ее атмосферы. А во время вторичного затмения, когда планета прячется за свою звезду, мы можем наблюдать изменения спектра, связанные с отражением от атмосферы и поверхности планеты. Так же, как и у Луны, у экзопланет можно наблюдать фазы. Если изменения блеска системы, вызванные этим эффектом, не постоянны, то это говорит о том, что альбедо планеты (способность отражать свет) меняется. Например, вследствие движения облаков в ее атмосфере.

Свойства экзопланет должны быть связаны со свойствами родительских облаков. Изучая материю на стадии звездообразования, мы вносим вклад в понимание эволюции планетных систем. К сожалению, Земля претерпела значительные изменения в ходе истории, и уже мало напоминает то протопланетное вещество, из которого когда-то родилась. Но совсем рядом с нами летают метеориты и кометы. Некоторые из них даже падают на Землю и попадают в лаборатории. До каких-то из них могут долететь космические аппараты. Прямо перед нами отличный объект исследования! Остается только доказать, что и другие планетные системы эволюционировали так же, как наша.

Можно ли найти жизнь на других планетах?

Для этого нужно обнаружить биомаркеры - проявления жизнедеятельности организмов. Лучшим биомаркером были бы передачи условного «Первого канала», но сойдет и наличие кислорода. Без жизни кислород на Земле был бы связан и исчез из атмосферы за десяток тысяч лет. Обнаружив кислород в атмосферах экзопланет, мы сможем утверждать, что не одиноки во Вселенной. Как его найти, было рассказано выше. Но вот только приборов с достаточной чувствительностью пока нет. Прорыв в этом направлении ожидается после запуска космического телескопа им. Джеймса Вебба (JWST).

Что могут сделать в этой области ученые из России и, в частности, из УрФУ?

Несмотря на то, что в плане изучения экзопланет Россия отстает от остального научного сообщества, у нас есть возможность сократить это отставание. Относительно малобюджетные программы по поиску экзопланетных систем (пилотный проект KPS Коуровской обсерватории УрФУ) позволят сделать первый шаг и помогут в наборе данных для статистического анализа. Высокоточные фотометрические измерения можно проводить и на имеющемся оборудовании, это позволяет искать атмосферы у некоторых экзопланет. Спектральные наблюдения во время транзитов и вторичных затмений относительно доступны для крупнейших телескопов России. Что нужно сделать для старта этих программ - найти заинтересованных людей и оплатить их работу. Немного вложиться в оборудование.

Второе направление - моделирование и интерпретация наблюдаемых эффектов. Это может быть как теоретическая работа, так и экспериментальная - исследование поведения и свойств образцов в условиях космоса и сравнение с наблюдаемыми эффектами. Для этого необходимо создание установки, имитирующей условия космического пространства. В качестве образцов можно использовать метеориты из коллекции УрФУ.

Дмитрий Трунин

Бовыка Валентина Евгеньевна

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 20 г. Краснодара

Распространение химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд.

Реферат по физике

Выполнен ученицей:

10 «Б» класса МБОУ СОШ № 20 г. Краснодара

Бовыка Валентиной

Учитель:

Скрылева Зинаида Владимировна

Краснодар

2016

  1. Химия космоса, что изучает химия космоса.
  2. Некоторые термины.
  3. Химический состав планет Солнечной системы и Луны.
  4. Химический состав комет, метеоритов.
  5. Первичный нуклеосинтез.
  6. Другие химические процессы во вселенной.
  7. Звезды.
  8. Межзвездная среда
  9. Список использованных ресурсов

Химия космоса. Что изучает химия космоса?

Предметом изучения химии космоса является химический состав космических тел (планет, звезд, комет и т.д), межзвездного пространства, а также химические процессы, которые происходят в космосе.

Химия космоса занимается преимущественно процессами, протекающими при атомно-молекулярном взаимодействии веществ, а нуклеосинтезом внутри звезд занимается физика.

Некоторые термины

Для простоты восприятия следующего материала необходим словарь терминов.

Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов.

Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков.

Кометы – космические тела, которые состоят из замороженных газов, пыли.

Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства.

Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела.

Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами.

Основные компоненты межзвездного вещества: газ, пыль, космические лучи.

Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Химический состав планет Солнечной системы и Луны

Планеты Солнечной системы – это небесные тела, вращающиеся вокруг звезды под названием Солнце.

Солнечная система состоит из 8 планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.

Рассмотрим каждую планету в отдельности.

Меркурий

Самая близкая планета к Солнцу в Солнечной системе, самая маленькая планета. Диаметр Меркурия составляет примерно 4870 км.

Химический состав

Ядро планеты – железное, ферромагнитное. Содержание железа = 58%

Атмосфера по одним данным состоит большей частью из азота (N 2 ) с примесью углекислого газа (CO 2 ), по другим – из гелия (He), неона (Ne) и аргона (Ar).

Венера

Вторая планета Солнечной системы. Диаметр ≈ 6000 км.

Химический состав

Ядро железное, мантия содержит силикаты, карбонаты.

Атмосфера состоит на 97% из углекислого газа (CO 2 ), остальное приходится на азот (N 2 ), воду (H 2 O) и кислород (O 2 ).

Земля

Третья планета Солнечной системы, единственная планета Солнечной системы с наиболее благоприятными условиями для жизни. Диаметр примерно 12500 км.

Химический состав

Ядро железное. Земная кора содержит кислород O 2 (49%), кремний Si (26%), алюминий Al (4,5%), а также другие химические элементы. Атмосфера на 78% состоит из азота (N 2 ), на 21% из кислорода (O 2 ) и на 0,03% из углекислого газа (CO 2 ), остальное приходится на инертные газы, пары воды и примеси. Гидросфера состоит в большей степени из кислорода O 2 (85,82%), водорода H 2 (10,75%) и других элементов. В состав всех живых существ обязательно входит углерод (C).

Марс

Марс – четвертая планета Солнечной системы. Диаметр примерно 7000 км

Химический состав

Ядро железное. В коре планеты содержатся оксиды железа и силикаты.

Юпитер

Юпитер – пятая планета от Солнца. Самая крупная планета солнечной системы. Диаметр более 140000 км.

Химический состав

Ядро – сжатые водород (H 2 ) и гелий (He). В атмосфере содержатся водород (H 2 ), метан (CH 4 ), гелий (He), аммиак (NH 3 ).

Сатурн

Сатурн – шестая планета от Солнца. Имеет диаметр около 120000 км.

Химический состав

Данных о ядре и земной коре нет. Атмосфера состоит из тех же газов, что и атмосфера Юпитера.

Уран и Нептун

Уран и Нептун – седьмая и восьмая планеты соответственно. Обе планеты имеют примерный диаметр 50000 км.

Химический состав

Данных о ядре и коре нет. Атмосфера образована метаном (CH 4 ), гелием (He), водородом (H 2 ).

Луна

Луна – спутник Земли, ее сырьевая база. Лунный грунт называют реголитом, в ее состав входят оксид кремния (IV), оксид алюминия и оксиды других металлов, много урана, нет воды.

Химический состав комет, метеоритов

Метеориты

Метеориты бывают железными, железно-каменными и каменными. Чаще всего на Землю падают именно каменные метеориты. В среднем по подсчетам на каждый железный метеорит приходится 16 каменных.

Химический состав железных метеоритов: 90% железа (Fe), 8,5% никеля (Ni), 0,6% кобальта (Co) и 0,01% кремния (Si).

Каменные метеориты в основном состоят из кислорода (0 2 ) (41%) и кремния (Si) (21%).

Кометы

Кометы представляют собой твердые тела, которые окружены газовой оболочкой. Ядро состоит из замороженных метана (CH 4 ) и аммиака (NH 3 ) с минеральными примесями. В газовых кометах было обнаружено множество радикалов и ионов. Наиболее современные наблюдения проводились за кометой Хейла-Боппа, в ее состав входили сероводород, вода, тяжелая вода, сернистый газ, формальдегид, метанол, муравьиная кислота, циановодород, метан, ацетилен, этан, фостерит и другие соединения.

Первичный нуклеосинтез

Для рассмотрения первичного нуклеосинтеза обратимся к таблице.

Возраст вселенной

Температура, К

Состояние и состав вещества

0,01 с

10 11

нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково.

0,1 с

3*10 10

Частицы те же, но отношение числа протонов к числу нейтронов 3:5

10 10

электроны и позитроны аннигилируют, p:n =3:1

13,8 с

3*10 9

Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны.

35 мин

3*10 8

Устанавливается количество D и Не по отношению к числу p и n

4 Не:Н + ≈24-25% по массе

7*10 5 лет

3*10 3

Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Сущность первичного нуклеосинтеза сводится к образованию из нуклонов ядер дейтерия, из ядер дейтерия и нуклонов – ядер гелия с массовым числом 3и трития, а из ядер 3 Не, 3 Н и нуклонов – ядер 4 Не.

Другие химические процессы во Вселенной

При высоких температурах (в околозвездных пространствах температура может достигать порядка нескольких тысяч градусов) все химические вещества начинают распадаться на составляющие – радикалы (СН 3 С 2 , СН и т.д.) и атомы (Н, О и т.д.)

Звезды

Звезды различаются по массе, размерам, температуре, светимости.

Наружные слои звезд состоят в основном из водорода, а также из гелия, кислорода и других элементов (С, Р, N, Ar, F, Mg и т.д)

Звезды субкарлики состоят из более тяжелых элементов: кобальт, скандий, титан, марганец, никель и т.д.

В атмосфере звезд гигантов могут встречаться не только атомы химических элементов, но и молекулы тугоплавких оксидов (например, титана и циркония), а также некоторые радикалы: CN, CO, C 2

Химический состав звезд изучают спектроскопическим методом. Таким образом, на Солнце были найдены железо, водород, кальций и натрий. Гелий был впервые найден именно на Солнце, а позднее уже обнаружен в атмосфере планеты Земля. В настоящее время в спектрах Солнца и других небесных тел найдено 72 элемента, все эти элементы обнаружены и на Земле.

Источником энергии звезд являются термоядерные реакции синтеза.

На первом этапе жизни звезды в ее недрах происходит превращение водорода в гелий

4 1 Н → 4 Не

Затем гелий превращается в углерод и кислород

3 4 Не→ 12 С

4 4 Не→ 16 О

На следующем этапе топливом являются углерод и кислород, в альфа процессах образуются элементы неона до железа. Дальнейшие реакции захвата заряженных частиц являются эндотермическими, поэтому нуклеосинтез останавливается. Из-за остановки термоядерных реакций нарушается равновесие железного ядра, начинается гравитационное сжатие, часть энергии которого расходуется на распад ядра железа на α-частицы и нейтроны. Этот процесс называется гравитационным коллапсом и протекает около 1 с. В результате резкого повышения температуры в оболочке звезды происходят термоядерные реакции горения водорода, гелия, углерода и кислорода. Выделяется огромное количество энергии, что приводит к взрыву и разлету вещества звезды. Это явление называется сверхновой. При взрыве сверхновой выделяется энергия, которая придает частицам большое ускорение, потоки нейтронов бомбардируют ядра элементов, которые образовались ранее. В процессе нейтронных захватов с последующим β-излучением происходит синтез ядер элементов тяжелее железа. До этой стадии доходят только наиболее массивные звезды.

Во время коллапса идет образование нейтронов из протонов и электронов по схеме:

1 1 р + -1 0 е → 1 0 n + v

Образуется нейтронная звезда.

Ядро сверхновой может превратиться в пульсар – ядро, которое вращается с периодом в доли секунды и излучает электромагнитное излучение. Ее магнитное поле достигает колоссальных размеров.

Также возможно, что большая часть оболочки преодолевает силу взрыва и падает на ядро. Получая дополнительную массу, нейтронная звезда начинает сжиматься до образования «черной дыры».

Межзвездная среда

Межзвездная среда состоит из газа, пыли, магнитных полей и космических лучей. Поглощение излучения звезд происходит за счет газа и пыли. Пыль межзвездной среды имеет температуру 100-10 К, температура межзвездного газа может колебаться в пределах от 10 до 10 7 К и зависит от плотности и источников нагрева. Межзвездный газ может быть как нейтральным, так и ионизированным (Н 2 0 , Н 0 , Н + , е - , Не 0 ).

Первое химическое соединение в космосе было обнаружено в 1937 году с помощью спектроскопии. Этим соединением был радикал СН, через несколько лет был найден циан CN, а в 1963 году обнаружили гидроксил ОН.

С применением в спектроскопии радиоволн и инфракрасного излучения стало возможным изучение «холодных» участков космического пространства. Сначала были обнаружены неорганические вещества: вода, аммиак, угарный газ, сероводород, а потом органические: формальдегид, муравьиная кислота, уксусная кислота, уксусный альдегид и муравьиный спирт. В 1974 году в космосе нашли этиловый спирт. Потом японскими учеными был обнаружен метиламин CH 3 -NH 2 .

В межзвездном пространстве движутся потоки атомных ядер – космические лучи. Около 92% из этих ядер составляют ядра водорода, 6% - гелия, 1% - ядра более тяжелых элементов. Считается, что космические лучи образуются вследствие взрыва сверхновых.

Пространство между космическими телами заполнено межзвездным газом. Он состоит из атомов, ионов и радикалов, а также в ее состав входит пыль. Доказано существование таких частиц как: CN, CH, OH, CS, H 2 O, CO, COS, SiO, HCN, HCOOH, CH 3 OH и другие.

Столкновение частиц космического излучения, солнечного ветра и межзвездного газа приводит к образованию разнообразных частиц, в том числе и органических.

При столкновении протонов с атомами углерода образуются углеводороды. Из силикатов, карбонатов и различных оксидов образуется гидроксил OH.

Под действием космических лучей в атмосфере Земли образуются такие изотопы, как: углерод с массовым числом 14 14 С, бериллий, массовое число которого равно 10 10 Ве, и хлор с массовым числом 36 36 Cl.

Изотоп углерода с массовым числом 14 накапливается в растениях, кораллах, сталактитах. Изотоп бериллия с массовым числом 10 – в донных отложениях морей и океанов, полярном льду.

Взаимодействие космического излучения с ядрами земных атомов дает информацию о процессах, протекающих в космосе. Этими вопросами занимается современная наука – экспериментальная палеоастрофизика.

К примеру, протоны космических лучей, сталкиваясь с молекулами азота в воздухе, разбивают молекулу на атомы, и протекает ядерная реакция:

7 14 N + 1 1 H→2 2 4 He + 4 7 Be

В результате этой реакции образуется радиоактивный изотоп бериллия.

Протон в момент столкновения с атомами атмосферы выбивает из этих атомов нейтроны, эти нейтроны взаимодействуют с атомами азота, что приводит к образованию изотопа водорода с массовым числом 3 – трития:

7 14 N + 0 1 n→ 1 3 H + 6 12 C

Тритий, подвергаясь β-распаду, выбрасывает электрон:

1 3 H→ -1 0 e + 2 3 He

Так образуется легкий изотоп гелия.

Радиоактивный изотоп углерода образуется в ходе захвата атомами азота электронов:

7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в космосе

Рассмотрим распространенность химических элементов в галактике Млечный путь. Данные о наличии тех или иных элементов были получены путем спектроскопии. Для наглядного представления используем таблицу.

Заряд ядра

Элемент

Массовая доля в частях на тысячу

Водород

Гелий

Кислород

10,4

Углерод

Неон

1,34

Железо

Азот

0,96

Кремний

0,65

Магний

0,58

Сера

0,44

Для более наглядного представления обратимся к круговой диаграмме.

Как видно на диаграмме, самым распространенным элементом во Вселенной является водород, вторым по распространенности является гелий, а третьим – кислород. Массовые доли других элементов значительно меньше.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Распространенность химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд Выполнила Ученица 10 «Б» класса МБОУ СОШ №20 Бовыка Валентина Руководитель: Скрылева З.В.

Химия космоса – наука о химическом составе космических тел, межзвездного пространства, а также о химических процессах, которые протекают в космосе.

Необходимые термины Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов. Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков. Кометы – космические тела, которые состоят из замороженных газов, пыли. Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства. Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела. Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами. Основные компоненты межзвездного вещества: газ, пыль, космические лучи. Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Меркурий Венера Земля Марс

Юпитер Сатурн Уран Нептун

Луна – спутник Земли, ее сырьевая база.

Метеорит Комета

Первичный нуклеосинтез Возраст вселенной Температура, К Состояние и состав вещества 0,01 с 10 11 нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково. 0,1 с 3*10 10 Частицы те же, но отношение числа протонов к числу нейтронов 3:5 1с 10 10 электроны и позитроны аннигилируют, p:n =3:1 13,8 с 3*10 9 Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны. 35 мин 3*10 8 Устанавливается количество D и Не по отношению к числу p и n 4 Не:Н + ≈24-25% по массе 7*10 5 лет 3*10 3 Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Основные реакции протекающие в недрах звезд 4 1 Н → 4 Не 3 4 Не→ 12 С 4 4 Не→ 16 О +1 1 р + -1 0 е → 1 0 n + v

Основные реакции протекающие за счет компонентов межзвездной среды 7 14 N + 1 1 H →2 2 4 He + 4 7 Be 7 14 N + 0 1 n→ 1 3 H + 6 12 C 1 3 H → -1 0 e + 2 3 He 7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в галактике Млечный путь

Список использованных ресурсов http://wallpaperscraft.ru/catalog/space/1920x1080 http://www.cosmos-online.ru/planets-of-the-solar-system.html http://www.grandars.ru/shkola/estestvoznanie/merkuriy.html http://www.grandars.ru/shkola/estestvoznanie/venera.html http://dic.academic.ru/pictures/wiki/files/69/Earth_Eastern_Hemisphere.jpg http://spacetimes.ru/img/foto/planeta-mars_big.jpg http://www.shvedun.ru/images/stat/jp/jp.jpg http://spacegid.com/wp-content/uploads/2012/12/1995-49-f.jpg http://v-kosmose.com/wp-content/uploads/2013/12/4_179_br.jpg http://v-kosmose.com/wp-content/uploads/2013/11/Neptune_Full_br.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/FullMoon2010.jpg/280px-FullMoon2010.jpg http://www.opoccuu.com/tunm01.jpg https://i.ytimg.com/vi/06xW4UegYZ0/maxresdefault.jpg http://terramia.ru/wp-content/uploads/2013/01/Nocturne-Eruption.jpg http://galspace.spb.ru/index61.file/ic.jpg

В 1806 г., в самый разгар наполеоновских войн, вблизи французского городка Але упал необычный метеорит. Это было лишь три года спустя после того, как метеориты были официально "Признаны" парижской академией наук. Предубеждения против "Небесных Камней" оставались еще очень сильными, часть осколков метеорита Але была просто утеряна, и лишь один из них через 28 лет попал в лабораторию знаменитого шведского химика Йенса Якоба берцелиуса

Поначалу ученый подумал, что произошла ошибка - метеорит Але не был ни каменным, ни железным, ни железока - менным. Кора плавления (поверхностный слой), однако, свидетельствовала о космическом происхождении необычного камня, родоначальника самого редкого и тогда еще не известного типа метеоритов - углистых хондритов.

Метеорит Але содержал органическую массу, растворимую в воде. При нагревании его частицы бурели и обугливались - явный признак присутствия органических соединений, соединений углерода. (Мы напомним, что такие простые углеродсодержащие соединения, как со, со 2, угольная кислота Н 2 со 3 и ее соли, - это соединения неорганические.) Хотя сходство с земными веществами того же типа было очевидным, берцелиус резонно отметил, что этот факт "еще не Является Доказательством Присутствия Организмов в Первоначальном Источнике".

Работа берцелиуса положила начало изучению органических соединений в метеоритах. К сожалению, до сих пор материал, доступный исследованию, очень редок. Углистые хондриты весьма непрочны - их легко даже пальцами растереть в порошок (и при этом, повторяем, появляется характерный запах нефти. Вообще редкие среди метеоритов, углистые хондриты к тому же легко разрушаются при полете в атмосфере земли. Да и попав на земную поверхность, они, как правило, бесследно пропадают, смешавшись с земными породами. Неудивительно поэтому, что во всем мире найдены и сохранены пока лишь два десятка углистых хондритов.

Спустя четыре года после того, как были опубликованы работы берцелиуса, в 1838 г. в южной Африке упал еще один углистый хондрит, исследованный затем известным немецким химиком Фридрихом вёлером - тем самым вёлером, которому за несколько лет до этого удалось получить вещество животного происхождения - мочевину - из неорганического вещества.

Вёлер выделил из метеорита нефтеобразное маслянистое вещество "с Сильным Битуминозным Запахом" и, в отличие от берцелиуса, пришел к выводу, что такие вещества, "если опираться на современный уровень знаний", могут быть синтезированы только живыми организмами. Заметим, что количество органического материала, выделяемого из углистых хопдритов, невелико - около одного процента. Но и этого вполне достаточно, чтобы сделать весьма важные выводы.

В 1864 г., опять во Франции, вблизи деревни ор - гейль, выпал метеоритный дождь из углистых хондритов - случай исключительный в истории астрономии. Французский химик клец строго доказал, что нерастворимое в воде черное вещество метеорита оргейль представляет собою органические соединения, а вовсе не графит или аморфный углерод. Его поразило сходство этих органических соединений с подобными же веществами, находимыми в торфе пли буром угле. В докладе, представленном парижской академии наук, клец утверждал, что органические вещества в метеоритах, "По-видимому, Могут Указывать на Существование Организованной Материи на Небесных Телах".

С тех пор в течение почти столетия изучение органики метеоритов велось эпизодически, от случая к случаю, без каких-либо существенных обобщений. Среди этих немногочисленных работ следует упомянуть исследования метеорита мигеи, выполненные в 1889 г. Ю. и. симашко. Русский ученый также обнаружил в этом углистом хондрите органические вещества битуминозного типа.

Фото углистый хондрит.
Не следует думать, что все органические вещества непременно связаны с жизнью или, более того, являются принадлежностью живых существ. Астрономам известны многочисленные простейшие углеродсодержащие образования, безусловно не имеющие никакого непосредственного отношения к жизни. Таковы, скажем, радикалы СН и CN, наблюдаемые в межзвездном пространстве и атмосферах холодных звезд. Более того, в условиях космоса, по-видимому, постоянно идет синтез весьма сложных органических соединений до аминокислот включительно. В этом нас убеждают, в частности, любопытные эксперименты американского исследователя Р. берджера. С помощью ускорителя элементарных частиц он бомбардировал протонами смесь метана, аммиака и воды, охлажденную до - 230 с. спустя всего несколько минут в этой ледяной смеси ученый обнаружил мочевину, ацетамид, ацетон. В этих опытах берджер, по сути, моделировал условия межпланетного пространства. Поток протонов имитировал первичные космические лучи, а смесь метаноаммиачных и обычных льдов - это, в сущности, типичная модель кометного ядра.

Другой известный американский биохимик М. Калвин бомбардировал потоком быстрых электронов смесь водорода, метана, аммиака и водяных паров. В этих экспериментах был получен аденин - одно из четырех азотистых оснований, входящих в состав нуклеиновых кислот. Не такие ли процессы происходили в первичной атмосфере земли и некоторых других планет?

Создается впечатление, что в космосе из неорганических веществ и неорганическим путем создаются белковоподобные соединения - "Полуфабрикаты" возможной будущей жизни.

Таким образом, наличие органических веществ в метеоритах само по себе еще никак не может свидетельствовать о существовании жизни на небесных телах. Эти вещества могли возникнуть и абиогенно, без всякой непосредственной связи с жизнью. Для доказательства противного нужны более веские аргументы.

Именно в таком плане и ведется дискуссия в современной науке о метеоритах. Спор еще не закончен, но полученные результаты представляют огромный интерес.

Еще в 1951-1952 гг. английский биохимик Мюллер выделил из углистого хондрнта битуминозные соединения. В сущности, он повторил работы берцелиуса, вёлера и клеца, но на несравненно более высоком уровне. В метеоритных битумах гораздо больше серы, хлора и азота, чем в подобных земных соединениях, это обстоятельство побудило Мюллера сделать вывод, что битумы в метеоритах имеют абиогенное происхождение.

С иных позиций к той же проблеме подошли уже упомянутый М. Калвин и с. вон. Доклад, представленный ими в 1960 г. на международный симпозиум по изучению космического пространства, был озаглавлен многозначительно: "внеземная жизнь. Некоторые органические составляющие метеоритов и их значение для возможной биологической эволюции вне земли". Американские исследователи выделяли из образцов углистого хондрита летучие вещества, которые затем пропускали через масс-спектрометр. В этих экспериментах определялась относительная масса осколков неизвестных молекул и, кроме того, исследовались инфракрасные и ультрафиолетовые спектры экстрактов углерод - содержащих соединений метеорита. Результаты ошеломляющие получились.

Из углистого хондрита удалось выделить вещество, как две капли воды похожее на цитозин, - еще одно из четырех азотистых оснований. Нашли в метеорите и смесь углеводородов, похожую на нефть земного происхождения.

В следующем, 1961 г., в нью-йоркской академии наук оживленно обсуждалась работа трех американских химиков - Г. Надя, Д. хенесси и у. майнтайна. Из углистых хондритов они выделили набор парафинов, весьма похожий на тот, который входит в состав кожицы яблок или пчелиного воска. В связи с этим обострились споры и вокруг проблемы происхождения нефти.

Мы до сих пор точно не знаем, откуда взялась нефть - источник горючего для самолетов, кораблей и автомобилей, ценнейшее сырье для нефтехимии. Образовалась ли нефть в результате разложения живших когда-то организмов, или "Черное Золото" есть продукт какого-то сложного абиогенного синтеза? В случае если верна первая гипотеза, битумы в метеоритах можно рассматривать как следы внеземной жизни. Только в том случае, если же нефть - неорганического происхождения, то метеоритные битумы не имеют никакого прямого отношения к жизни вне земли, а, по-видимому, возникли в результате абиогенных процессов.

Мы уже говорили об экспериментах, моделирующих образование органических соединений в условиях межпланетного пространства. Еще легче представить себе подобный абиогенный синтез в недрах земноподобной планеты. Органические вещества в метеоритах возникли абиогенно - вот главный тезис тех, кто не считает метеориты носителями остатков каких-то внеземных организмов. Такую позицию отстаивают Андерс, бриггс, у нас в советском союзе - исследователь углистых хондритов Г. П. вдовыкин. По его мнению, "изучение спектров различных небесных тел показывает, что углерод ябляется одним, из наиболее распространенных элементов в них: он обнаруживается в виде элемента (с 2, с 3) и в виде соединений (СН 2, CN, со 2 и др.) Во всех типах небесных тел. эти составляющие атмосфер и звездного пространства могли полимеризоваться с образованием сложных органических молекул" (Л. Кузнецова. Тринадцать загадок неба. М., сов. Россия, 1967 огонек.

Наиболее оживленные дискуссии ныне вокруг загадочных "Организованных Элементов идут". Впервые эти странные включения поперечником от 5 до 50 мкм обнаружили в 1961 г. Н. Надь и Д. Клаус при исследовании образцов четырех углистых хондритов. Внешне они напоминали земные ископаемые микроскопические водоросли. Среди них американские исследователи выделили по морфологическим признакам пять типов объектов, причем некоторые из объектов оказались спаренными, как бы погибшими в процессе клеточного деления. Почти все из "Организованных Элементов" походили на простейшие растения, живущие только в воде, и это обстоятельство, по мнению Надя и Клауса, исключало возможность загрязнения метеорита из почвы. Позже Ф. стаплин и другие обнаружили "Организованные Элементы" в ряде углистых хондритов, причем все исследователи отмечали их сходство с некоторыми одноклеточными водорослями.

В 1962 г. ленинградский геолог б. в. Тимофеев из метеоритов Саратов и мигея выделил странные спороподобные образования. Их было более двух десятков - желтовато-серых, крошечных, полых, почти сферических оболочек, имеющих в поперечнике от 10 до 60 мкм. Оболочки оказались однослойными, разными по толщине, иногда смятыми в отчетливо очерченные складки. По словам исследователя, "поверхность оболочек гладкая, реже мелкобугорчатая. На одной из форм видно круглое отверстие - устьице, характерное для некоторых одноклеточных водорослей. Многие из указанных Находок могут быть сравнены с древнейшими на земле ископаемыми одноклеточными водорослями, жившими более 600 млн. Лет тому назад, но их нельзя отнести ни к одной группе растительного мира нашей планеты" (огонек, 1962, номер 4, с. 12.

Нуклеиновые кислоты

Нуклеи́новые кислоты

Дезоксирибонуклеиновые и рибонуклеиновые кислоты, универсальные компоненты всех живых организмов, ответственные за хранение, передачу и воспроизведение (реализацию) генетической информации. На два типа все Н. к. делят по углеводному компоненту молекул: дезоксирибозе у дезоксирибонуклеиновых кислот (ДНК) и рибозе у рибонуклеиновых кислот (РНК). Биологическая роль ДНК у большинства организмов заключается в хранении и воспроизведении генетической информации, а РНК - в реализации этой информации в строении молекул белков (Белки) в процессе их синтеза.

Нуклеиновые кислоты были обнаружены в 1868 г. швейцарским ученым Мишером (F. Miescher), который установил, что эти вещества локализуются в ядрах клеток, обладают кислотными свойствами и в отличие от белков содержат фосфор. Химически Н. к. являются полинуклеотидами, т.е. биополимерами, построенными из мономерных звеньев - мононуклеотидов, или нуклеотидов (фосфорных эфиров так называемых нуклеозидов - производных пуриновых и пиримидиновых азотистых оснований, D-рибозы или 2-дезокси-D-рибозы). Пуриновыми основаниями, входящими в молекулу ДНК, являются аденин (А) и гуанин (Г), пиримидиновыми - цитозин (Ц) и тимин (Т). В нуклеозидах РНК вместо тимина присутствует урацил (У). В полинуклеотидную цепь нуклеотиды соединяются посредством фосфодиэфирной связи (рис. 1).

Первичная структура Н. к. определяется порядком чередования азотистых оснований, а их пространственная конфигурация - нековалентными взаимодействиями между участками молекулы: водородными связями между азотистыми основаниями, гидрофобными взаимодействиями между плоскостями пар оснований, электростатическими взаимодействиями с участием отрицательно заряженных фосфатных групп и противоионов.

Дезоксирибонуклеиновые кислоты, выделенные из различных организмов, отличаются по соотношению входящих в их состав азотистых оснований, т.е. по нуклеотидному составу, который у всех ДНК подчиняется правилу Чаргаффа: 1) число молекул аденина в молекуле Н. к. равно числу молекул тимина, т.е. А = Т; 2) число молекул гуанина равно числу молекул цитозина, т.е. Г = Ц; 3) число молекул пуриновых оснований равно числу молекул пиримидиновых оснований; 4) число 6-аминогрупп равно числу 6-кетогрупп, что означает, что сумма аденин + цитозин равна сумме гуанин + тимин, т.е. А + Ц = Г + Т. Правило Чаргаффа справедливо и для так называемых минорных азотистых оснований (метилированных или других производных пуриновых и пиримидиновых оснований). Таким образом, нуклеотидный состав каждой ДНК характеризуется постоянной величиной - молярным соотношением

(фактором специфичности) или процентным содержанием Г-Ц-пар, т.е.

Величина последнего показателя практически одинакова для организмов одного класса. У высших растений и позвоночных животных она составляет 0,55-0,93.

В журнале Nature было опубликовано исследование, которое продемонстрировало, что органические соединения, с неожиданно высоким уровнем сложности, существуют по всей Вселенной.Данные результаты позволяют предположить, что комплексные органические соединения могут создаваться звездами.

Профессор Сун Куок и доктор Йонг Жанг из Гонконгского университета продемонстрировали, что органические субстанции во Вселенной состоят как из ароматических (циклическая форма), так и из алифатических (цепочки) соединений. Данные соединения настолько сложны, что их химическая структура напоминает уголь или нефть. Поскольку уголь и нефть являются остатками древней жизни, считалось, что подобная форма органической материи образуется исключительно из живых организмов. Открытие команды позволяет предположить, что комплексные органические соединения могут быть синтезированы в космосе даже в отсутствии каких-либо форм жизни.

Ученые исследовали таинственный феномен: набор инфракрасных излучений в звездах, межзвездном пространстве и галактиках. Их спектральные сигнатуры известны под названием "неопознанные инфракрасные выбросы". На протяжении более двух десятилетий, наиболее широко принятой теорией относительно источников возникновения подобных сигнатур, было мнение, что это простые органические молекулы, состоящие из атомов углерода и водорода, под названием полициклические ароматические углеводороды (ПАУ). Ведя наблюдения с помощью Инфракрасной космической обсерватории и Космического телескопа "Спитцер", Куок и Жанг продемонстрировали, что спектр излучения невозможно объяснить наличием молекул ПАУ. Команда выдвинула мнение, что субстанции, генерирующие подобное инфракрасное излучение имеют намного более сложную химическую структуру.

Звезды не только создают это комплексное органическое вещество, но и выталкивают его в межзвездное пространство. Полученные результаты вполне согласуются с более ранней идеей, предложенной Куоком, согласно которой старые звезды являются молекулярными фабриками, способными изготавливать органические смеси. "Наша работа продемонстрировала, что звезды без проблем справляются с созданием сложных органических соединений в условиях почти полного вакуума", - сказал Куок. "Теоретически это невозможно, но мы, тем не менее, можем это видеть".

Еще более интересен тот факт, что по строению эта органическая звездная пыль схожа с комплексными органическими соединениями, которые находят в метеоритах. Поскольку метеориты являются остатками ранней Солнечной системы, то возникает вопрос о том, могли ли звезды обогатить раннюю Солнечную систему органическими соединениями. Вопрос о том, какую роль эти соединения играли в процессе зарождения и развития жизни на Земле, остается открытым.

«Углерод встречается в природе как в свободном, так и в соединенном состоянии, в весьма различных формах и видах. В свободном состоянии углерод известен по крайней мере в трех видах: в виде угля, графита и алмаза. В состоянии соединений углерод входит в состав так называемых органических веществ, т. е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты иорганических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал - все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых или, лучше, углеводородистых соединений».

Эти слова из «Основ химии» Д. И. Менделеева служат как бы развернутым эпиграфом к нашему рассказу о жизненно важном элементе - углероде. Впрочем, есть здесь один тезис, с которым, с точки зрения современной науки о веществе, можно и поспорить, но об этом ниже.

Вероятно, пальцев на руках хватит, чтобы пересчитать химические элементы, которым не была посвящена хотя бы одна научная книга. Но самостоятельная научно-популярная книга - не какая-нибудь брошюрка на 20 неполных страницах с обложкой из оберточной бумаги, а вполне солидный том объемом почти в 500 страниц - есть в активе только одного элемента - углерода.

И вообще литература по углероду - богатейшая. Это, во-первых, все без исключения книги и статьи химиков- органиков; во-вторых, почти все, что касается полимеров; в-третьих, бесчисленные издания, связанные с горючими ископаемыми; в-четвертых, значительная часть медикобиологической литературы…

Поэтому не будем пытаться объять необъятное (ведь не случайно авторы популярной книги об элементе № 6 назвали ее «Неисчерпаемый»!, а сконцентрируем внимание лишь на главном из главного - попытаемся увидеть углерод с трех точек зрения.

Углерод - один из немногочисленных элементов «без роду, без племени». История общения человека с этим веществом уходит во времена доисторические. Имя первооткрывателя углерода неизвестно, неизвестно и то, какая из форм элементного углерода - алмаз или графит - была открыта раньше. И то и другое случилось слишком давно. Определенно утверждать можно лишь одно: до алмаза и до графита было открыто вещество, которое еще несколько десятилетий назад считали третьей, аморфной формой элементного углерода - уголь. Но в действительности уголь, даже древесный, это не чистый углерод. В нем есть и водород, и кислород, и следы других элементов. Правда, их можно удалить, но и тогда углерод угля не станет самостоятельной модификацией элементного углерода. Это было установлено лишь во второй четверти нашего века. Структурный анализ показал, что аморфный углерод - это по существу тот же графит. А значит, никакой он не аморфный, а кристаллический; только кристаллы его очень мелкие и больше в них дефектов. После этого стали считать, что углерод на Земле существует лишь в двух элементарных формах - в виде графита и алмаза.

Видео Органические соединения в космосе

Алканы. Строение и номенклатура

По определению алканы – предельные или насыщенные углеводороды, имеющие линейную или разветвлённую структуру. Также называются парафинами. Молекулы алканов содержат только одинарные ковалентные связи между атомами углерода. Общая формула –

Чтобы назвать вещество, необходимо соблюсти правила. По международной номенклатуре названия формируются с помощью суффикса -ан. Названия первых четырёх алканов сложились исторически. Начиная с пятого представителя, названия составляются из приставки, обозначающей количество атомов углерода, и суффикса -ан. Например, окта (восемь) образует октан.

Для разветвлённых цепей названия складываются:

  • из цифр, указывающих номера атомов углерода, около которых стоят радикалы;
  • из названия радикалов;
  • из названия главной цепи.

Пример: 4-метилпропан – у четвёртого атома углерода в цепи пропана находится радикал (метил).

Рис. 1. Структурные формулы с названиями алканов.

Каждый десятый алкан даёт называние следующим девяти алканам. После декана идут ундекан, додекан и далее, после эйкозана – генэйкозан, докозан, трикозан и т.д.

Органические и неорганические вещества. Органические вещества

Органические соединения отличаются от неорганических, прежде всего, своим составом. Если неорганические вещества могут быть образованы любыми элементами Периодической системы, то в состав органических должны непременно входить атомы C и H. Такие соединения называют углеводородами (CH4 – метан, C6H6 – бензол). Углеводородное сырье (нефть и газ) приносит человечеству огромную пользу. Однако и распри вызывает нешуточные.

Производные углеводородов содержат в своем составе еще и атомы O и N. Представители кислородсодержащих органических соединений – спирты и изомерные им простые эфиры (C2H5OH и CH3-O-CH3), альдегиды и их изомеры – кетоны (CH3CH2CHO и CH3COCH3), карбоновые кислоты и сложные эфиры (CH3-COOH и HCOOCH3). К последним принадлежат также жиры и воски. Углеводы – тоже кислородсодержащие соединения.

Почему же ученые объединили вещества растительные и животные в одну группу – органические соединения и в чем их отличие от неорганических? Одного четкого критерия, позволяющего разделить органические и неорганические вещества, нет. Рассмотрим ряд признаков, объединяющих органические соединения.

  1. Состав (построены из атомов C, H, O, N, реже P и S).
  2. Строение (связи С- Н и С – С обязательны, они образуют разной длины цепи и циклы);
  3. Свойства (все органические соединения горючи, образуют при горении СО2 и H2O).

Среди органических веществ много полимеров природного (белки, полисахариды, натуральный каучук и др.), искусственного (вискоза) и синтетического (пластмассы, синтетические каучуки, полиэстер и другие) происхождения. Они обладают большой молекулярной массой и более сложным, по сравнению с неорганическими веществами, строением.

Наконец, органических веществ насчитывают более 25 миллионов.

Это лишь поверхностный взгляд на органические и неорганические вещества. О каждой из этих групп написан не один десяток научных трудов, статей и учебников.

Как мы уже обозначали выше, живым веществом рассматриваемой оболочки Земли считается вся совокупность организмов, принадлежащих ко всем царствам природы. Особое же положение среди всех занимают люди. Причинами этого стало:

  • потребительская позиция, а не продуцирующая;
  • развитие разума и сознания.

Все остальные представители - это живое вещество. Функции живого вещества были разработаны и указаны Вернадским. Он отводил следующую роль организмам:

  1. Окислительно-восстановительная.
  2. Деструктивная.
  3. Транспортная.
  4. Средообразующая.
  5. Газовая.
  6. Энергетическая.
  7. Информационная.
  8. Концентрационная.

Самые основные функции живого вещества биосферы - газовая, энергетическая и окислительно-восстановительная. Однако и остальные тоже являются важными, обеспечивающими сложные процессы взаимодействия между всеми частями и элементами живой оболочки планеты.

Рассмотрим каждую из функций более подробно, чтобы понять, что именно подразумевается и в чем суть.

Космос в популярном сознании представляется царством холода и пустоты (помните песню: «Здесь холод космический, цвет неба иной»?). Однако примерно с середины XIX века исследователи стали понимать, что пространство между звездами по крайней мере не пусто. Наглядный признак существования межзвездного вещества - так называемые темные облака, бесформенные черные пятна, особенно хорошо различимые на светлой полосе Млечного Пути. В XVIII–XIX веках полагали, что это реальные «дырки» в распределении звезд, однако к 1920-м годам сложилось мнение: пятна выдают присутствие колоссальных облаков межзвездной пыли, которые мешают нам видеть свет расположенных за ними звезд (фото 1).

В середине XIX века началась новая эпоха в астрономии: благодаря работам Густава Кирхгофа и Роберта Бунзена появился спектральный анализ, позволивший определять химический состав и физические параметры газа в астрономических объектах. Астрономы быстро оценили новую возможность, и 1860-е годы стали временем бурного расцвета звездной спектроскопии. Одновременно, во многом благодаря усилиям замечательного наблюдателя Уильяма Хеггинса, накапливались и доказательства наличия газа не только в звездах, но и в пространстве между ними.

Хеггинс был пионером научных исследований незвездной материи. С 1863 года он публиковал результаты спектроскопического исследования некоторых туманностей, включая Большую Туманность Ориона, и продемонстрировал, что спектры туманностей в видимом диапазоне сильно отличаются от спектров звезд. Излучение типичной звезды - непрерывный спектр, на который накладываются линии поглощения, рождающиеся в звездной атмосфере. А спектры туманностей, полученные Хеггинсом, состояли из нескольких эмиссионных линий, практически без непрерывного спектра. Это был спектр горячего разреженного газа, параметры которого совершенно не похожи на параметры газа в звездах. Основной вывод Хеггинса: получено наблюдательное подтверждение предположения Гершеля о том, что в космосе помимо звезд есть диффузное вещество, распределенное по значительным объемам пространства.

Чтобы собственное свечение межзвездного газа можно было наблюдать в оптическом диапазоне, он должен быть не только горячим, но и довольно плотным, а этим условиям отвечает далеко не все межзвездное вещество. В 1904 году Йоханнес Хартманн заметил, что более холодный и/или разреженный межзвездный газ выдает свое присутствие, оставляя в звездных спектрах собственные линии поглощения, которые рождаются не в атмосфере звезды, а вне ее, на пути от звезды к наблюдателю.

Исследование линий излучения и поглощения межзвездного газа позволило к 1930-м годам довольно хорошо изучить его химический состав и установить, что он состоит из тех же элементов, которые встречаются и на Земле. Несколько линий в спектрах долго не поддавались отождествлению, и Хеггинс предположил, что это новый химический элемент - небулий (от лат. nebula - облако), но он оказался всего лишь дважды ионизованным кислородом.

К началу 1930-х годов полагали, что все линии в спектре межзвездного газа выявлены и приписаны определенным атомам и ионам. Однако в 1934 году Пол Мерилл сообщил о четырех неидентифицированных линиях в желтой и красной областях спектра. Ранее наблюдавшиеся межзвездные линии имели очень малую ширину, как и положено атомарным линиям, образующимся в газе низкой плотности, а эти были шире и размытее. Практически сразу было высказано предположение, что это линии поглощения не атомов или ионов, а молекул. Но каких? Предлагались и экзотические молекулы, например натрия (Na 2), и привычные двухатомные соединения, еще в XIX веке обнаруженные в кометных хвостах тем же Хеггинсом, например молекула CN. Окончательно существование межзвездных молекул было установлено в конце 1930-х годов, когда несколько неидентифицированных линий в синей области спектра удалось однозначно связать с соединениями CH, CH + и CN.

Особенность химических реакций в межзвездной среде - доминирование двухчастичных процессов: стехиометрические коэффициенты всегда равны единице. Поначалу единственным путем к формированию молекул казались реакции «радиативной ассоциации»: чтобы два атома, столкнувшись, объединились в молекулу, необходимо отвести избыточную энергию. Если молекула, сформировавшись в возбужденном состоянии, успевает до распада излучить фотон и перейти в невозбужденное состояние, она сохраняет устойчивость. Расчеты, проведенные до 1950-х годов, показывали, что наблюдаемое содержание трех этих простых молекул вроде бы удается объяснить в предположении, что они формируются в реакциях радиативной ассоциации и разрушаются межзвездным полем излучения - совокупным полем излучения звезд Галактики.

Круг забот астрохимии в то время был не особенно широк, по крайней мере в межзвездной среде: три молекулы, с десяток реакций между ними и их составными элементами. Ситуация перестала быть спокойной в 1951 году, когда Дэвид Бэйтс и Лайман Спитцер пересчитали равновесные содержания молекул с учетом новых данных о скоростях реакций радиативной ассоциации. Оказалось, что атомы связываются в молекулы гораздо медленнее, чем считалось до этого, и потому простая модель промахивается в предсказании содержания CH и CH + на порядки величины. Тогда они предположили, что две из этих молекул появляются не в результате синтеза из атомов, а в результате разрушения более сложных молекул, конкретно - метана. А откуда взялся метан? Ну, он мог образоваться в звездных атмосферах, а потом попасть в межзвездную среду в составе пылинок.

Позже космической пыли стали приписывать и более активную химическую роль, нежели роль простого переносчика молекул. Например, если для эффективного протекания химических реакций в межзвездной среде не хватает третьего тела, которое отводило бы избыток энергии, почему не предположить, что это пылинка? Атомы и молекулы могли бы вступать в реакции друг с другом на ее поверхности, а потом испаряться, пополняя собой межзвездный газ.

Свойства межзвездной среды

Когда в межзвездной среде были обнаружены первые молекулы, ни ее физические свойства, ни даже химический состав не были хорошо известны. Само обнаружение молекул CH и CH + считалось в конце 1930-х годов важным доказательством наличия там углерода и водорода. Все изменилось в 1951 году, когда было обнаружено излучение межзвездного атомарного водорода, знаменитое излучение на длине волны около 21 см. Стало ясно, что именно водорода в межзвездной среде больше всего. По современным представлениям, межзвездное вещество - это водород, гелий и лишь 2% по массе более тяжелых элементов. Значительная часть этих тяжелых элементов, особенно металлов, находится в пылинках. Полная масса межзвездного вещества в диске нашей Галактики - несколько миллиардов масс Солнца, или 1–2% от полной массы диска. А масса пыли примерно в сто раз меньше массы газа.

Вещество распределено по межзвездному пространству неоднородно. Его можно разделить на три фазы: горячую, теплую и холодную. Горячая фаза - это очень разреженный корональный газ, ионизованный водород с температурой в миллионы кельвинов и плотностью порядка 0,001 см –3 , занимающий примерно половину объема галактического диска. Теплая фаза, на долю которой приходится еще половина объема диска, имеет плотность около 0,1 см –3 и температуру 8000–10 000 К. Водород в ней может быть и ионизованным, и нейтральным. Холодная фаза действительно холодна, ее температура не более 100 K, а в самых плотных областях мороз до единиц кельвинов. Холодный нейтральный газ занимает всего около процента объема диска, но масса его составляет примерно половину всей массы межзвездного вещества. Это подразумевает значительную плотность, сотни частиц на кубический сантиметр и выше. Значительную по межзвездным понятиям, конечно, - для электронных приборов это замечательный вакуум, 10 –14 торр!

Плотный холодный нейтральный газ имеет клочковатую облачную структуру, ту самую, что прослеживается по облакам межзвездной пыли. Логично предположить, что облака пыли и облака газа - это одни и те же облака, в которых пыль и газ перемешаны друг с другом. Однако наблюдения показали, что области пространства, в которых поглощающее действие пыли максимально, не совпадают с областями максимальной интенсивности излучения атомарного водорода. В 1955 году Барт Бок с соавторами предположили, что в наиболее плотных участках межзвездных облаков, тех самых, которые делаются непрозрачными в оптическом диапазоне из-за высокой концентрации пыли, водород находится не в атомарном, а в молекулярном состоянии.

Поскольку водород - основной компонент межзвездной среды, названия различных фаз отражают состояние именно водорода. Ионизованная среда - это среда, в которой ионизован водород, другие атомы могут сохранять нейтральность. Нейтральная среда - это среда, в которой водород нейтрален, хотя другие атомы могут быть ионизованы. Плотные компактные облака, предположительно состоящие в основном из молекулярного водорода, называются молекулярными облаками. Именно в них и начинается подлинная история межзвездной астрохимии.

Невидимые и видимые молекулы

Первые межзвездные молекулы были обнаружены благодаря своим линиям поглощения в оптическом диапазоне. Поначалу их набор был не слишком велик, и для их описания хватало простых моделей на основе реакций радиативной ассоциации и/или реакций на поверхностях пылинок. Однако еще в 1949 году И.С. Шкловский предсказал, что более удобен для наблюдения межзвездных молекул радиодиапазон, в нем можно наблюдать не только поглощение, но и излучение молекул. Чтобы увидеть линии поглощения, необходима фоновая звезда, излучение которой будут поглощать межзвездные молекулы. Но если вы смотрите на молекулярное облако, то фоновых звезд вы не увидите, потому что их излучение будет полностью поглощено пылью, входящей в состав того же самого облака! Если же молекулы излучают сами, вы увидите их везде, где они есть, а не только там, где их заботливо подсвечивают сзади.

Излучение молекул связано с наличием у них дополнительных степеней свободы. Молекула может вращаться, вибрировать, совершать более сложные движения, с каждым из которых связан набор энергетических уровней. Переходя с одного уровня на другой, молекула, так же, как и атом, поглощает и излучает фотоны. Энергетика этих движений невысока, поэтому они с легкостью возбуждаются даже при низких температурах в молекулярных облаках. Фотоны, соответствующие переходам между молекулярными энергетическими уровнями, попадают не в видимый диапазон, а в инфракрасный, субмиллиметровый, миллиметровый, сантиметровый... Поэтому исследования излучения молекул начались, когда у астрономов появились инструменты для наблюдений в длинноволновых диапазонах.

Правда, первая межзвездная молекула, обнаруженная по наблюдениям в радиодиапазоне, наблюдалась все-таки в поглощении: в 1963 году в радиоизлучении остатка сверхновой Кассиопея A. Это была линия поглощения гидроксила (OH) - длина волны 18 см, а вскорости гидроксил был обнаружен и в излучении. В 1968 году наблюдалась эмиссионная линия аммиака 1,25 см, через несколько месяцев нашли воду - линия 1,35 см. Очень важным открытием в исследованиях молекулярной межзвездной среды стало открытие в 1970 году излучения молекулы оксида углерода (CO) на длине волны 2,6 мм.

До этого времени молекулярные облака были в известной степени гипотетическими объектами. У самого распространенного химического соединения во Вселенной - молекулы водорода (H 2) - нет переходов в длинноволновой области спектра. При низких температурах в молекулярной среде она просто не светится, то есть остается невидимой, несмотря на все свое высокое содержание. У молекулы H 2 есть, правда, линии поглощения, но они попадают в ультрафиолетовый диапазон, в котором нельзя наблюдать с поверхности Земли; нужны телескопы, установленные либо на высотных ракетах, либо на космических аппаратах, что значительно усложняет наблюдения и еще значительнее удорожает их. Но даже при наличии заатмосферного инструмента линии поглощения молекулярного водорода можно наблюдать только при наличии фоновых звезд. Если учесть, что звезд или иных астрономических объектов, излучающих в ультрафиолетовом диапазоне, в принципе не так много и, кроме того, в этом диапазоне поглощение пыли достигает максимума, становится понятно, что возможности изучения молекулярного водорода по линиям поглощения весьма ограниченны.

Молекула CO стала спасением - в отличие, например, от аммиака, она начинает светиться при невысоких плотностях. Две ее линии, соответствующие переходам из основного вращательного состояния в первое возбужденное и из первого во второе возбужденное, попадают в миллиметровый диапазон (2,6 мм и 1,3 мм), все еще доступный для наблюдений с поверхности Земли. Более коротковолновое излучение поглощается земной атмосферой, более длинноволновое излучение дает изображения меньшей четкости (при заданном диаметре объектива угловое разрешение телескопа тем хуже, чем больше наблюдаемая длина волны). И молекул CO много, причем настолько много, что в этом виде находится, по-видимому, большая часть всего углерода в молекулярных облаках. Это означает, что содержание CO определяется не столько особенностями химической эволюции среды (в отличие от молекул CH и CH +), сколько попросту количеством доступных атомов C. И поэтому содержание CO в молекулярном газе можно считать, по крайней мере в первом приближении, постоянным.

Поэтому именно молекулу CO используют как индикатор наличия молекулярного газа. И если вам где-то встречается, например, карта распределения молекулярного газа в Галактике, это будет карта распределения именно оксида углерода, а не молекулярного водорода. Допустимость столь широкого применения CO в последнее время все чаще ставится под сомнение, но заменить его особенно нечем. Так что приходится компенсировать возможную неопределенность в интерпретации наблюдений CO осмотрительностью в ее проведении.

Новые подходы к астрохимии

В начале 1970-х годов количество известных межзвездных молекул стало измеряться десятками. И чем больше их открывалось, тем яснее становилось, что прежние химические модели, которые и содержание первой тройки CH, CH + и CN объясняли не очень уверенно, с возросшим количеством молекул вовсе не работают. Новый взгляд (он принят и сейчас) на химическую эволюцию молекулярных облаков был предложен в 1973 году Вильямом Ватсоном и независимо Эриком Хербстом и Вильямом Клемперером.

Итак, мы имеем дело с очень холодной средой и очень богатым молекулярным составом: сегодня известно около полутора сотен молекул. Реакции радиативной ассоциации слишком медленны, чтобы обеспечить наблюдаемое содержание даже двухатомных молекул, не говоря уже о более сложных соединениях. Реакции на поверхностях пылинок более эффективны, но при 10 К молекула, синтезированная на поверхности пылинки, в большинстве случаев останется примороженной к ней.

Ватсон, Хербст и Клемперер предположили, что в формировании молекулярного состава холодных межзвездных облаков определяющую роль играют не реакции радиативной ассоциации, а ион-молекулярные реакции, то есть реакции между нейтральными и ионизованными компонентами. Их скорости не зависят от температуры, а в некоторых случаях при низких температурах даже возрастают.

Дело за малым: вещество облака нужно немного ионизовать. Излучение (свет близких к облаку звезд или совокупное излучение всех звезд Галактики) не столько ионизует, сколько диссоциирует. Кроме того, из-за пыли излучение не проникает внутрь молекулярных облаков, засвечивая лишь их периферию.

Но в Галактике есть другой ионизующий фактор - космические лучи: атомные ядра, разогнанные каким-то процессом до очень высокой скорости. Природа этого процесса до сих пор окончательно не раскрыта, хотя ускорение космических лучей (тех, что интересны с точки зрения астрохимии) происходит, скорее всего, в ударных волнах, сопровождающих вспышки сверхновых звезд. Космические лучи (как и все вещество Галактики) состоят главным образом из полностью ионизованных водорода и гелия, то есть из протонов и альфа-частиц.

Сталкиваясь с самой распространенной молекулой H 2 , частица ионизует ее, превращая в ион H 2 + . Он, в свою очередь, вступает в ион-молекулярную реакцию с другой молекулой H 2 , образуя ион H 3 + . И вот этот-то ион и становится главным двигателем всей последующей химии, вступая в ион-молекулярные реакции с кислородом, углеродом и азотом. Дальше все идет по общей схеме, которая для кислорода выглядит так:

O + H 3 + → OH + + H 2
OH + + H 2 → H 2 O + + H
H 2 O + + H 2 → H 3 O + + H
H 3 O + + e → H 2 O + H или H 3 O + + e → OH + H 2

Последняя реакция в этой цепочке - реакция диссоциативной рекомбинации иона гидроксония со свободным электроном - приводит к образованию молекулы, насыщенной водородом, в данном случае молекулы воды, или к образованию гидроксила. Естественно, диссоциативная рекомбинация может случиться и с промежуточными ионами. Конечный итог этой последовательности для основных тяжелых элементов - образование воды, метана и аммиака. Возможен другой вариант: частица ионизует атом примесного элемента (O, C, N), а этот ион реагирует с молекулой H 2 , опять же с образованием ионов OH + , CH + , NH + (далее с теми же остановками). Цепочки разных элементов, естественно, развиваются не в изоляции: их промежуточные компоненты реагируют друг с другом, и в результате этого «перекрестного опыления» большая часть углерода переходит в молекулы CO, кислород, оставшийся не связанным в молекулах CO, - в молекулы воды и O 2 , а основным резервуаром азота становится молекула N 2 . Те же атомы, что не вошли в эти основные компоненты, становятся составными частями более сложных молекул, самая большая из которых, известная на сегодняшний день, состоит из 13 атомов.

В эту схему не вписываются несколько молекул, образование которых в газовой фазе оказалось крайне неэффективным. Например, в том же 1970 году кроме CO была в значительных количествах обнаружена существенно более сложная молекула - метанол. Долгое время синтез метанола считался результатом короткой цепочки: ион CH 3 + реагировал с водой, образуя протонированный метанол CH 3 OH 2 + , а затем этот ион рекомбинировал с электроном, разделяясь на метанол и атом водорода. Однако эксперименты показали, что молекуле CH 3 OH 2 + при рекомбинации проще разваливаться посередине, так что газофазный механизм образования метанола не работает.

Однако есть и более важный пример: в газовой фазе не образуется молекулярный водород! Схема с ион-молекулярными реакциями работает только при условии, что в среде уже есть молекулы H 2 . Но откуда они берутся? Существует три способа сформировать молекулярный водород в газовой фазе, но все они чрезвычайно медленны и в галактических молекулярных облаках работать не могут. Решение проблемы найдено в возвращении к одному из прежних механизмов, а именно к реакциям на поверхностях космических пылинок.

Как и прежде, пылинка в этом механизме играет роль третьего тела, предоставляя на своей поверхности условия для объединения атомов, которые не могут объединиться в газовой фазе. В холодной среде свободные атомы водорода примерзают к пылинкам, но из-за тепловых колебаний не сидят на одном месте, а диффундируют по их поверхности. Два атома водорода, встретившись в процессе этих блужданий, могут объединиться в молекулу H 2 , а энергия, выделяющаяся при реакции, отрывает молекулу от пылинки и переносит ее в газ.

Естественно, если атом водорода встретит на поверхности не своего собрата, а какой-то другой атом или молекулу, итог реакции также будет иным. Но есть ли на пыли другие компоненты? Есть, и на это указывают современные наблюдения наиболее плотных частей молекулярных облаков, так называемых ядер, которые (не исключено) в будущем превратятся в звезды, окруженные планетными системами. В ядрах происходит химическая дифференциация: из наиболее плотной части ядра исходит в основном излучение соединений азота (аммиака, иона N 2 H +), а соединения углерода (CO, CS, C 2 S) светятся в окружающей ядро оболочке, поэтому на картах радиоизлучения такие ядра выглядят как компактные пятна эмиссии соединений азота, окруженные колечками эмиссии оксида углерода.

Современное объяснение дифференциации таково: в наиболее плотной и холодной части молекулярного ядра соединения углерода, в первую очередь CO, примерзают к пылинкам, образуя на них ледяные оболочки-мантии. В газовой фазе они сохраняются только на периферии ядра, куда, возможно, проникает излучение звезд Галактики, частично испаряющее ледяные мантии. С соединениями азота ситуация иная: основная азотсодержащая молекула N 2 к пыли примерзает не так быстро, как CO, и потому в газовой фазе даже самой холодной части ядра гораздо дольше остается достаточно азота, чтобы обеспечить наблюдаемое количество аммиака и иона N 2 H + .

В ледяных мантиях пылинок тоже идут химические реакции, главным образом связанные с добавлением атомов водорода к примерзшим молекулам. Например, последовательное присоединение атомов H к молекулам CO в ледяных оболочках пылинок приводит к синтезу метанола. Чуть более сложные реакции, в которых помимо водорода участвуют и другие компоненты, ведут к появлению и других многоатомных молекул. Когда в недрах ядра загорается молодая звезда, ее излучение испаряет мантии пылевых частиц, и продукты химического синтеза появляются в газовой фазе, где их также удается наблюдать.

Успехи и проблемы

Разумеется, помимо ион-молекулярных и поверхностных реакций в межзвездной среде происходят и другие процессы: и нейтраль-нейтральные реакции (в том числе реакции радиативной ассоциации), и фотореакции (ионизации и диссоциации), и процессы обмена компонентами между газовой фазой и пылинками. В современные астрохимические модели приходится включать сотни различных компонентов, связанных между собой тысячами реакций. Важно вот что: количество моделируемых компонентов существенно превышает то количество, что реально наблюдается, поскольку из одних только наблюдаемых молекул составить работающую модель не удается! Собственно говоря, так было с самого начала современной астрохимии: ион H 3 + , существование которого постулировалось в моделях Ватсона, Хербста и Клемперера, был обнаружен в наблюдениях только в середине 1990-х годов.

Все современные данные о химических реакциях в межзвездной и околозвездной среде собраны в специализированных базах данных, из которых наиболее популярны две: UDFA (UMIST Database for Astrochemistry ) и KIDA (Kinetic Database for Astrochemistry ).

Эти базы данных, по сути, представляют собой списки реакций с двумя реагентами, несколькими продуктами и численными параметрами (от одного до трех), позволяющими рассчитать скорость реакции в зависимости от температуры, поля излучения и потока космических лучей. Наборы реакций на поверхностях пылинок менее стандартизованы, однако и здесь есть два-три варианта, которые применяются в большинстве астрохимических исследований. Реакции, включенные в эти наборы, позволяют количественно объяснить результаты наблюдений молекулярного состава объектов разного возраста и при разных физических условиях.

Сегодня астрохимия развивается в четырех направлениях.

Во-первых, большое внимание привлекает к себе химия изотопомеров, в первую очередь химия соединений дейтерия. Помимо атомов H в межзвездной среде присутствуют также атомы D, в пропорции примерно 1:100 000, что сравнимо с содержанием прочих примесных атомов. Помимо молекул H 2 на пылинках образуются также молекулы HD. В холодной среде реакция
H 3 + + HD → H 2 D + + H 2
не уравновешивается обратным процессом. Ион H 2 D + играет в химии роль, аналогичную роли иона H 3 + , и через него атомы дейтерия начинают распространяться по более сложным соединениям. Итог оказывается достаточно интересным: при общем отношении D/H порядка 10 –5 отношение содержания некоторых дейтерированных молекул к содержанию недейтерированных аналогов (например, HDCO к H 2 CO, HDO к H 2 O) достигает процентов и даже десятков процентов. Аналогичное направление совершенствования моделей - учет различий в химии изотопов углерода и азота.

Во-вторых, одним из основных астрохимических направлений остаются реакции на поверхностях пылинок. Здесь большая работа проводится, например, по изучению особенностей реакций в зависимости от свойств поверхности пылинки и от ее температуры. До сих пор неясны детали испарения с пылинки синтезировавшихся на ней органических молекул.

В-третьих, химические модели постепенно проникают все глубже в исследования динамики межзвездной среды, в том числе в исследования процессов рождения звезд и планет. Это проникновение очень важно, поскольку оно позволяет напрямую соотносить численное описание движений вещества в межзвездной среде с наблюдениями молекулярных спектральных линий. Кроме того, эта задача имеет и астробиологическое приложение, связанное с возможностью попадания межзвездной органики на формирующиеся планеты.

В-четвертых, все больше становится наблюдательных данных о содержании различных молекул в других галактиках, в том числе и в галактиках на больших красных смещениях. Это означает, что мы уже не можем замыкаться в рамках Млечного Пути и должны разбираться с тем, как происходит химическая эволюция при ином элементном составе среды, при других характеристиках поля излучения, при других свойствах пылинок или какие химические реакции происходили в догалактической среде, когда весь набор элементов ограничивался водородом, гелием и литием.

При этом и рядом с нами остается немало загадок. Например, линии, найденные в 1934 году Мериллом, так до сих пор и не отождествлены. Да и происхождение первой найденной межзвездной молекулы - CH + - остается пока неясным...


Close