Движение твердых тел в механизмах рассматривают относительно звена, принимаемого условно за неподвижное и называемого стойкой (станина станка, корпус двигателя, шасси). Все остальные твердые тела, совершающие движение относительно стойки, называют подвижными звеньями. Каждое звено может состоять из одной или нескольких деталей, но в составе звена они не могут иметь относительного движения, т.е. образуют неразъемные или разъемные соединения отдельных деталей.

По выполняемым функциям звенья могут быть входными и выходными, ведущими и ведомыми, начальными и промежуточными. Входному звену сообщается движение, преобразуемое механизмом в требуемое движение других звеньев. Ведущее звено – звено, для которого элементарная работа внешних сил, приложенных к нему, является положительной. Выходное звено – звено, совершающее движение, для выполнения которого предназначен механизм. Ведомое звено – звено, для которого элементарная работа приложенных к нему внешних сил отрицательна или равна нулю.

Если звену задается одна или несколько обобщенных координат, определяющих положение всех механизмов относительно стойки, то звено называют начальным. Обобщенная координата механизма – это каждая из независимых между собой координат, определяющих положение всех звеньев механизма относительно стойки.

В зависимости от назначения механизма звеньям присваивают функциональные названия: кривошип , шатун, коромысло, поршень, шток, ползун, кулиса, кулачок, толкатель, зубчатое колесо, водило, сателлит, рычаг, траверса, коленчатый вал, распределительный вал и др.

В конкретных механизмах входное звено может быть как ведущим, так и ведомым на отдельных этапах движения в зависимости от приложенных сил и моментов сил, например вал двигателя в режимах разгона и торможения, вал электродвигателя при двигательном и генераторном режимах.

Напомним, что кинематической парой называют соединение двух твердых тел механизма, допускающее их заданное относительное движение (см. раздел 1.1). В паре при взаимодействии ее элементов происходит относительное движение звеньев. Число степеней свободы в относительном движении звеньев определяет вид пары по подвижности. Различают пары одноподвижные , двухподвижные , трехподвижные , четырехподвижные и пятиподвижные . Вид пары зависит от геометрических связей между элементами пары, т.е. условий, ограничивающих перемещения звеньев. Число уравнений связей в паре принимают за номер класса пары.

Каждый элемент сопряжения кинематической пары является совокупностью поверхностей, линий и отдельных точек, образуемых элементами двух твердых тел. Элемент обобщенный термин, относящийся к номинальнойповерхности, форма которой задается на чертеже или в другой технической документации. Реальные поверхности и реальные профили элементов пар могут иметь отклонения формы и отклонения расположения. Числовое значение предельных отклонений нормируется допусками цилиндричности, круглости, плоскостности, прямолинейности, параллельности в зависимости от степени точности и интервала размеров. Поверхность – это общая часть двух смежных областей пространства. В теории механизмов рассматривают поверхности с идеальной формой и идеальным расположением. При несоблюдении этого условия в парах появляются избыточные локальные связи, так как уравнения связей не являются тождественными, и пара становится статически неопределимой. Если элементы сопряжения в кинематической паре конгруэнтны, т.е. поверхности совпадают во всех своих точках, то пару называют низшей . Пары имеющие сопряжения, элементом которых являются линия или точка, называют высшими. Линия – это общая часть смежных областей поверхности.

Систему звеньев, соединенных между собой парами, называют кинематической цепью . Различают плоские и пространственные, замкнутые и незамкнутые, простые и сложные кинематические цепи.

В замкнутой цепи звенья образуют один или несколько контуров. Контур может быть жестким или иметь степени свободы. Количество степеней свободы определяет класс контура. В плоской цепи все подвижные звенья совершают плоское движение, параллельное одной и той же неподвижной плоскости. В простой цепи звено входит в одну или две кинематические пары. В сложной цепи имеется хотя бы одно звено, образующее больше двух кинематических пар.

Аналогами кинематических пар являются кинематические соединения , выполненные из нескольких подвижных деталей с поверхностным, линейным или точечным контактом элементов в форме компактной конструкции и обеспечивающей возможность разложения относительного движения на составляющие, эквивалентные парам соответствующего вида.

Схему механизма, содержащую стойку, подвижные звенья, кинематические пары с обозначением их вида и указывающую взаимное расположение элементов механизма, выполненную без масштаба, называют структурной схемой механизма .

Наиболее широко в механизмах машин, приборов и других устройств применяют вращательные пары (В ), которые допускают только одно вращательное движение одного звена относительно другого. На структурных и кинематических схемах они имеют условные обозначения в соответствии с рекомендациями международных стандартов (рис. 2.1, а ). Номи-нальные поверхности элементов 1, 2 вращательной пары обычно цилиндрические (рис. 2.1, б ), но могут иметь и другие формы(например, конические, сферические). На рис. 2.1, в приведена структурная схема манипулятора промышленного робота, на которой указаны шесть вращательных пар: О (0–1 ),А (1–2 ),В (2–3 ),С (3–4 ),D (4–5 ),E (5–6 ), связывающих звенья с соответствующими номерами. Схват 6 / имеет шесть степеней свободы, что равно числу одноподвижных пар незамкнутой кинематической цепи. В реальных конструкциях часто используют кинематические соединения, которые содержат несколько подвижных звеньев и несколько кинематических пар, но в таком аналоге вращательной пары только два звена соединяются с другими звеньями механизма. Конструкция подшипника качения, имеющего наружное 1 и внутреннее 2 кольца, между которыми расположены шарики 3, удерживаемые на определенном расстоянии друг относительно друга с помощью сепаратора 4 приведены на рис. 2.2, а.

Рис. 2.1. Структурная схема манипулятора промышленного робота

Рис. 2.2. Подшипники качения и их условные обозначения

В зависимости от направления воспринимаемой радиальной или осевой силы различают подшипники радиальные (рис. 2.2, б ), упорные (рис. 2.2, в ) и радиально-упорные (рис. 2.2, г ). На схемах используют соответствующие условные обозначения (рис. 2.2, д ). Рабочие поверхности в подшипниках скольжения могут иметь непосредственный контакт (сухое трение), быть разделены жидкостью (жидкостные, гидростатические, гидродинамические подшипники), газом (аэродинамические, аэростатические газовые) или разделены магнитными силами (магнитные опоры).

При использовании вместо вращательной пары кинематических соединений уменьшаются потери на трение, упрощается технология изготовления узлов за счет применения стандартных подшипников, увеличивается несущая способность узлов машин. Схему кинематической пары, отражающей только необходимое число геометрических связей, называют основной . Основная схема пары не содержит избыточных связей. Действительная схема пары может содержать дополнительные связи, но они должны быть тождественными (совпадающими). Устранение избыточных локальных связей в кинематическом соединении при установке валов и осей на нескольких подшипниках обеспечивается надлежащей точностью изготовления деталей и монтажа сборочных единиц. На рис. 2.3 показан длинный вал, установленный на трех шариковых подшипниках А , А / , А // . Соосность базовых поверхностей (рис. 2.3, а ) подшипников зависит от точности расточки отверстий в корпусных деталях и может регулироваться путем установки корпусов подшипников на станине (рис. 2.3, б ) в случае отклонений от прямолинейности общей оси A А / А // за счет смещения или наклона осей отдельных подшипников. При разработке технической документации на кинематические соединения, согласно ГОСТ 24642-81 и 24643-81, обычно указывают предельные отклонения от параллельности поверхностей вращения, отклонения от соосности (радиальное биение), отклонения от концентричности, отклонения от перпендикулярности.

Рис. 2.3. Вал, установленный на трех подшипниках качения

Для примера на рис. 2.4 приведена схема двухопорного вала с указанием для шеек А и В допусков цилиндричности (поз. 1 и 5 ), соосности (поз. 2 и 6) и перпендикулярности торцов (поз. 3 и4 ), которые должны быть выдержаны при шлифовании вала.

Рис. 2.4. Схема двухопорного вала

Аналогичные требования предъявляются при изготовлении отверстий в базовой детали (корпусе). В некоторых конструкциях (рис. 2.5) отклонения от прямолинейности из-за несоосности корпусных отверстий (рис. 2.5, а ) или наклона осей (рис. 2.5, б, в ) компенсируются с помощью сферической внешней поверхности наружного кольца шарикоподшипника и сферической поверхности в корпусе подшипникового узла. При надлежащей сборке узлов обеспечиваются прямолинейность оси кинематического соединения и тождественность геометрических связей за счет исключения избыточных связей.

Рис. 2.5. Схемы установки валов при незначительных отклонениях от прямолинейности

При значительных отклонениях оси вала от прямолинейности (рис. 2.6) вал устанавливают на специальных подшипниках, имеющих сферическую внешнюю поверхность наружного кольца. Такое кинематическое соединение обеспечивает вращение вала при наличии отклонения шеек А и А / вала от соосности (рис. 2.6, а ) и прямолинейности (рис. 2.6, б, в ).

Рис. 2.6. Схемы установки валов при значительных отклонениях от прямолинейности

Число дополнительных связей в реальной конструкции пары или кинематического соединения называют степенью статической неопределимости пары.

Консольный вал 1 с цилиндрической опорой 2, нагруженной в точке С силой F , показан на рис. 2.7, а . В опоре А можно методами статики найти реактивный момент и реакцию, а также прогибы в любой точке вала. Прогиб в точке С при условии а = b можно уменьшить в восемь раз, если ввести в конструкцию тождественные элементы А / с пятью дополнительными связями (рис. 2.7,б ). Число тождественных локальных связей можно уменьшить, если на правом конце вала установить плавающий сферический подшипник (рис. 2.7, б ), дающий только две дополнительные связи в опоре А / . Если вал установить в виде кинематического соединения с двумя сферическими подшипниками, из которых один плавающий, а второй неподвижен в осевом направлении (рис. 2.7, г ), то вал становится статически определимым, при этом в опорах реактивные моменты равны нулю. Однако прогиб такого вала в точке С (при а = b ) меньше прогиба для консольного вала только в два раза. Отсутствие избыточных локальных связей делает конструкцию пары нечувствительной к температурным и силовым деформациям вала и корпуса, а также к отклонениям в расположении осей элементов соединения.

Рис. 2.7. Схемы установки валов при расчетах реакций в опорах

Итак, в случае применения тождественных элементов уменьшаются допуски на форму и расположение сопрягаемых поверхностей, что обеспечивает сборку без деформации звеньев в кинематической цепи и устранение дополнительных сил в кинематических парах. При повышении точности сопряжения увеличиваются затраты на изготовление, но повышаются жесткость и несущая способность валов и осей, надежность и долговечность машины. Поэтому вопрос о допустимости тождественных связей, которые при деформации стойки или других звеньев могут быть избыточными, решается с учетом условий работы кинематической пары, затрат на изготовление, ремонт и эксплуатацию машины.

Оптимальная конструкция пары или соединения – понятие относительное: конструкция, оптимальная для одних условий, может быть неприемлемой для других. Оптимизация часто связана с технологичностью, под которой понимают совокупность свойств конструкции, проявляемых в оптимальных затратах труда, материалов, средств и времени при заданных показателях качества, объема выпуска, условиях изготовления, эксплуатации и ремонта машины. Конструкция, технологичная в единичном производстве, зачастую оказывается мало технологичной в массовом производстве и совершенно нетехнологичной в поточно-автоматизированном производстве и наоборот.

Схемы и условные обозначения основных видов кинематических пар приведены в табл. 2.1. Каждой паре в реальных конструкциях могут соответствовать конструктивные варианты кине-матических соединений в виде нескольких деталей, имеющих различное сочетание местных подвижностей, не влияющих на основную подвижность пары. Например, роликовый подшипник эквивалентен двухподвижной цилиндрической паре; шарикоподшипник сферический, допускающий перекосы осей в определенных пределах, эквивалентен сферической трехподвижной паре; упорный шарикоподшипник со сферической наружной поверхностью, установленный на конусной поверхности, эквивалентен пятиподвижной точечной паре.

Таблица 2.1

Основные виды кинематических пар

Кинематические соединения обычно имеют большое число избыточных локальных связей. Их можно устранить, используя принцип многопоточности. В таких конструкциях за счет высокой точности изготовления (например, шариков и колец в шарикоподшипниках) избыточные локальные связи являются тождественными. При этом статическая неопределимость соединения не оказывает вредного влияния на функционирование вращательной пары.

Кинематическая пара - это соединение двух звеньев, обеспечивающее перемещение одного звена относительно другого.

Кинематические пары передают нагрузку и движение и часто определяют работоспособность и надежность механизма и машины в целом. Поэтому правильный выбор вида пары, ее формы и размеров, а также конструкционных материалов и условий смазывания имеет большое значение при проектировании и эксплуатации машин.

Кинематические пары классифицируются по следующим признакам:

А). По числу степеней подвижности н

Возможные независимые движения одного звена относительно другого называются степенями подвижности кинематической пары H .

Ограничения, накладываемые на относительные движения звеньев, называются условиями связи в кинематических парах.

Число степеней подвижности кинематической пары определяется зависимостью

H =6- S (1.1)

где 6 -максимальное число степеней свободы твердого тела в пространстве (3 поступательных и 3 вращательных движения относительно осей координат XYZ);

S -число условий связи, наложенных кинематической парой на относительное движение каждого звена.

Кинематические пары делятся на: одноподвижные (поступательные, вращательные, винтовые), двухподвижные, (кулачек-толкатель, зуб-зуб), трехподвижные, (сферические), четырёхподвижные, (цилиндр-плоскость), пятиподвижные (шар-плоскость). Примеры приведены в таблице 1.1.

Б). По характеру соприкосновения звеньев

Кинематические пары делятся на низшие и высшие.

Низшими кинематическими парами называются такие, в которых соприкосновение звеньев происходит по поверхности.

Например, одноподвижные поступательная и вращательная кинематические пары,

Высшими называются такие кинематические пары, у которых соприкосновение звеньев происходит по линии или точке.

Например, кинематические пары зуб-зуб, кулачек - толкатель (рис.1.2, 1.3).

Так как в низших кинематических парах звенья соприкасаются по поверхностям, то удельное давление в них невелико, вследствие чего износ в низших кинематических парах невелик.

В местах контакта высших кинематических пар удельное давление очень велико, что вызывает их повышенный износ. Это большой недостаток высших кинематических пар по сравнению с низшими.

Однако они имеют и большое преимущество: если количество низших пар ограничено, то высших пар большое разнообразие, их количество практически не ограничено. Поэтому при помощи высших кинематических пар значительно проще создать механизмы, обеспечивающие заданный закон движения.

В). По характеру относительного движения

Виды кинематических пар приведены в таблице 1.1.

В – вращательная (Н=1), П – поступательная (Н=1), ВП – цилиндрическая (Н=2); ВВВ – сферическая (Н=3), ВВП – шар-цилиндр с прорезью (Н=3), ВПП – плоскостная (Н=3), ВВВП – шар-цилиндр (Н=4), ВВПП – цилиндр-плоскость (Н=4), ВВВПП – шар-плоскость (Н=5). Здесь буква «В» обозначает возможное вращательное движение, «П» -возможное поступательное движение.

Таблица 1.1

Кинематические цепи

Кинематическая цепь - это система звеньев, соединённых с помощью кинематических пар.

Классификация кинематических пар. Существует несколько классификаций кинематических пар

Существует несколько классификаций кинематических пар. Рассмотрим некоторые из них.

По элементам соединения звеньев :

- высшие (они имеются, например, в зубчатых и кулачковых механизмах); в них соединение звеньев друг с другом происходит по линии или в точке:

- низшие , в них соединение звеньев друг с другом происходит по поверхности; они бывают:

– вращательные

в плоских механизмах

– поступательные

– цилиндрические

в пространственных механизмах

– сферические

По количеству наложенных связей :

Тело, находясь в пространстве (в Декартовой системе координат X, Y, Z .) имеет 6 степеней свободы, а именно - перемещаться вдоль каждой из трёх осей X, Y и Z , а также вращаться вокруг каждой оси (рис.1.2). Если тело (звено) образует с другим телом (звеном) кинематическую пару, то оно теряет одну или несколько из этих 6 степеней свободы.

По количеству утраченных телом (звеном) степеней свободы кинематические пары разделяют на 5 классов. Например, если телами (звеньями), образовавшими кинематическую пару, утрачено по 5 степеней свободы каждым, эту пару называют кинематической парой 5-го класса. Если утрачено 4 степени свободы – 4-го класса и т.д. Примеры кинематических пар различных классов приведены на рис. 1.2.

Рис. 1.2. Примеры кинематических пар различных классов

По структурно-конструктивному признаку кинематические пары можно разделять на:

– вращательные,

– поступательные,

– сферические,

– цилиндрические

Кинематическая цепь .

Несколько звеньев, соединённых между собой кинематическими парами, образуют кинематическую цепь .

Кинематические цепи бывают:

замкнутые

разомкнутые

сложные

Чтобы из кинематической цепи получить механизм , необходимо:

а) одно звено сделать неподвижным – образовать станину(стойку),

б) одному или нескольким звеньям задать закон движения (сделать ведущими) таким образом, чтобы все остальные звенья совершали требуемые целесообразные движения.

Число степеней свободы механизма – это число степеней свободы всей кинематической цепи относительно неподвижного звена (стойки).

Для пространственной кинематической цепи в общем виде условно обозначим:

количество подвижных звеньев n ,

количество степеней свободы всех этих звеньев – 6n ,

количество кинематических пар 5-го класса – P 5 ,

количество связей, наложенных кинематическими парами 5-го класса на звенья, входящие в них, – 5 ,

количество кинематических пар 4-го класса – Р 4 ,

количество связей наложенных кинематическими парами 4-го класса на звенья, входящие в них, – 4Р 4 ,

Звенья кинематической цепи, образуя кинематические пары с другими звеньями, утрачивают часть степеней свободы. Оставшееся число степеней свободы кинематической цепи относительно стойки можно вычислить по формуле

W = 6n – 5P 5 – 4P 4 – 3P 3 – 2P 2 – P 1

Это структурная формула пространственной кинематической цепи, или формула Малышева. Она получена П.И. Сомовым в 1887 году и развита А.П. Малышевым в 1923 году.

Величину W называют степенью подвижности механизма (если из кинематической цепи образован механизм).

W = 3n – 2P 5 – P 4 Для плоской кинематической цепи и, соответственно, для плоского механизма:

Эту формулу называют формулой П.Л. Чебышева (1869 г.). Она может быть получена из формулы Малышева при условии, что на плоскости тело обладает не 6-ю, а 3-мя степенями свободы:

W = (6 – 3)n – (5 – 3)P 5 – (4 – 3) P 4 .

Величина W показывает, сколько должно быть у механизма ведущих звеньев (если W = 1 – одно, W = 2 – два ведущих звена и т.д.).

1.2. Классификация механизмов

Количество типов и видов механизмов исчисляется тысячами, поэтому классификация их необходима для выбора того или иного механизма из большого ряда существующих, а также для проведения синтеза механизма.

Универсальной классификации нет. Наиболее распространены 3 вида классификации:

1) функциональная /2/ – по принципу выполнения технологического процесса, а именно механизмы:

Приведения в движение режущего инструмента;

Питания, загрузки, съёма детали;

Транспортирования;

2) структурно-конструктивная /3/ – предусматривает разделение механизмов как по конструктивным особенностям, так и по структурным принципам, а именно механизмы:

Кривошипно-ползунные;

Кулисные;

Рычажно-зубчатые;

Кулачково-рычажные и т.д.

3) структурная – эта классификация проста, рациональна, тесно связана с образованием механизма, его строением, методами кинематического и силового анализа.

Она предложена Л.В. Ассуром в 1916 году и основана на принципе построения механизма путем наслоения (присоединения) кинематических цепей (в виде структурных групп) к начальному механизму.

Согласно этой классификации любой механизм можно получить из более простого присоединением к последнему кинематических цепей с числом степеней свободы W = 0, получивших название структурных групп или групп Ассура. Недостаток этой классификации – неудобство для выбора механизма с требуемыми свойствами.

Кинематической парой ( сокращено - парой) называют подвижное соединение двух соприкасающихся звеньев. Ограничение, наложенное на движение твердого тела, называют условием связи.

Таким образом, кинематическая пара накладывает условие связи на относительное движение двух соединяемых звеньев. Очевидно, что наибольшие число условий связи, наложенное кинематической парой, равно пяти (5).

Различное число условий связи, накладываемое на относительное движение звеньев кинематическими парами, позволяет разделить последние на пять классов, так что пара k-го класса накладывает k условий связи, где k из {1,2,3,4,5}. Отсюда следует, что кинематическая пара k-го класса допускает в относительном движении звеньев 6k степеней подвижности.

Следует заметить, что в механизмах применяются кинематические пары только пятого, четвертого и третьего классов. Кинематические пары первого, второго классов не нашли применения в существующих механизмах. шарнирный рычажный механизм кинематический

Высшие пары - это пары, в которых при соединении двух звеньев, контакт осуществляется на кривых и точках.

Низшие пары - это пары, в которых при соединении двух звеньев, контакт осуществляется по поверхностям.

Данный механизм состоит из 6 звеньев рисунок (2).

  • А) 1- Кривошип, подвижное звено, совершает вращательное движение;
  • Б) 2,4-шатуны, подвижные звенья, совершают сложные движения;
  • В) 3,5- ползуны, подвижные звенья, совершают поступательное движение;
  • Г) 6- стойка, неподвижное звено;

Количество подвижных звеньев=5.

Определение степени подвижности механизма.

В рассматриваемом механизме семь (7) кинематических пар, из которых пять (5) вращательных и две (2) поступательные.

Степень подвижности механизмов определяется по формуле:

W=3(n-1)-2P5-P4;

n - Число звеньев;

P5 - количество кинематических пар 5 класса;

P4 - количество кинематических пар 4 класса;

w=3(6-1)-2*7=1; w=1;

Группа ассуры и группы начального звена.

Разделим механизм на группы асура. Для этого выделим группы начального звена. Так как степень подвижности механизма w=1, то и группы начального звена должно быть w=1. В группу входит стойка (6) и подвижное звено (1).

Простейшие группы звеньев, присоединение к которым к другим звеньям механизма не изменяет числа его степеней свободы, называют группами асуры. Поскольку единственное неподвижное звено вошло в группу начальных звеньев, то группы ассуры содержит только подвижные звенья.

Степень подвижности группы асуры w=0 и может быть определена как число степеней свободы группы относительно неподвижного звена. Группы ассуры классифицируются по числу кинематических пар, которыми они присоединяются к основному механизму. Это число определяет порядок группы. Кроме того группа ассуры имеет класс определяемый числом кинематических пар, образующих наиболее сложный замкнутый контур.

вращательные;

поступательные;

винтовые;

сферические.


Условные обозначения звеньев и кинематических пар на кинематических схемах.

Кинематической схемой механизма называется графическое изображение в выбранном масштабе взаимного расположения звеньев, входящих в кинематические пары, с применением условных обозначений по ГОСТ 2770-68. Большими буквами латинского алфавита на схемах обозначаются центры шарниров и другие характерные точки. Направления движения входных звеньев отмечаются стрелками. Кинематическая схема должна иметь все параметры необходимые для кинематического исследования механизма: размеры звеньев, числа зубьев зубчатых колес, профили элементов высших кинематических пар. Масштаб схемы характеризуют масштабным коэффициентом длины Kl , который равен отношению длины AB l звена в метрах к длине отрезка АВ, изображающего это звено на схеме, в миллиметрах: Kl = l AB / AB

Кинематическая схема, по существу, есть модель, которой заменяют реальный механизм для решения задач его структурного и кинематического анализа. Отметим основные допущения, которые при этой схематизации подразумеваются:

а) звенья механизма абсолютно жесткие;

б) зазоры в кинематических парах отсутствуют


Кинематические цепи и их классификация.

Кинематические цепи по характеру относительного движения звеньев разделяются на плоские и пространственные. Кинематическая цепь называется плоской, если точки её звеньев описывают траектории, лежащие в параллельных плоскостях. Кинематическая цепь называется пространственной, если точки её звеньев описывают неплоские траектории или траектории, лежащие в пересекающихся плоскостях.

Классификация кинематических цепей:

Плоские – при закреплении одного звена, остальные звенья совершают плоское движение, параллельно некоторой неподвижной плоскости.

Пространственные – при закрепление одного звена, остальные звенья совершают движение в различных плоскостях.

Простые – в каждое звено входит не более, чем две кинематические пары.

Сложные – хотя бы одно звено имеет более двух кинематических пар.

Замкнутые – входит не более чем две кинематические пары, и эти звенья образуют один или несколько замкнутых контуров

Разомкнутые – звенья не образуют замкнутый контур.


Число степеней свободы кинематической цепи, подвижность механизма.

Число входных звеньев для превращения кинематической цепи в механизм должно равняться числу степеней свободы этой кинематической цепи.

Под числом степеней свободы кинематической цепи в данном случае подразумевается число степеней свободы подвижных звеньев относительно стойки (звена, принятого за неподвижное). Однако сама стойка в реальном пространстве может перемещаться.

Введем следующие обозначения:

k – число звеньев кинематической цепи

p1 – число кинематических пар первого класса в данной цепи

p2 – число пар второго класса

p3 – число пар третьего класса

p4 – число пар четвертого класса

p5 – число пар пятого класса.

Общее число степеней свободы k свободных звеньев, размещенных в пространстве, равно 6k. В кинематической цепи они соединяются в кинематические пары (т.е. на их относительное движение накладываются связи).

Кроме того, в качестве механизма используется кинематическая цепь, имеющая стойку (звено, принятое за неподвижное). Поэтому число степеней свободы кинематической цепи будет равно общему числу степеней свободы всех звеньев за вычетом связей, накладываемых на их относительное движение:

Число связей, накладываемых всеми парами I класса, равно их числу, т.к. каждая пара первого класса накладывает одну связь на относительное движение звеньев, соединенных в такую пару; число связей, накладываемых всеми парами II класса, равно их удвоенному количеству (каждая пара второго класса накладывает две связи) и т.д

У звена, принятого за неподвижное, отнимаются все шесть степеней свободы (на стойку накладывается шесть связей). Таким образом:

S1=p1, S2=2p2, S3=3p3, S4=4p4, S5=5p5, Sстойки=6,

а сумма всех связей

∑Si=p1+2p2+3p3+4p4+5p5+6.

В результате получается следующая формула для определения числа степеней свободы пространственной кинематической цепи:

W=6k–p1–2p2–3p3–4p4–5p5–6.

Сгруппировав первый и последний члены уравнения, получаем:

W=6(k–1)–p1–2p2–3p3–4p4–5p5,

или окончательно:

W=6n–p1–2p2–3p3–4p4–5p5,

Таким образом, число степеней свободы разомкнутой кинематической цепи равно сумме подвижностей (степеней свободы) кинематических пар, входящих в эту цепь. Кроме степеней свободы на качество работы манипуляторов и промышленных роботов большое влияние оказывает их маневренность.


Виды зубчатых механизмов, их строение и краткая характеристика.

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев колесом.

Термин «зубчатое колесо» является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса 2.

Основными преимуществами зубчатых передач являются:

Постоянство передаточного числа (отсутствие проскальзывания);

Компактность по сравнению с фрикционными и ременными передачами;

Высокий КПД (до 0,97…0,98 в одной ступени);

Большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс 30000 ч);

Возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).

Недостатки:

Шум при высоких скоростях;

Невозможность бесступенчатого изменения передаточного числа;

Необходимость высокой точности изготовления и монтажа;

Незащищенность от перегрузок;

Наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.

Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.


Основной закон зацепления.

Для обеспечения постоянства передаточного

отношения: необходимо, чтобы профили сопряженных зубьев были очерчены такими кривыми, которые удовлетворяли бы требованиям основной теоремы зацепления

Основной закон зацепления: общая нормаль N-N к профилям, проведенная в точке C их касания, делит межосевое расстояние а w на части, обратно пропорциональные угловым скоростям. При постоянном передаточном отношении ( = const) и зафиксированных центрах О 1 и О 2 точка W будет занимать на линии центров неизменное положение. При этом проекции скорости  k 1 и  k 2 не равны. Их разность указывает на относительное скольжение профилей в направлении касательной К-К, что вызывает их износ. Равенство проекций скоростей и возможно только в одном положении, когда точка С контакта профилей совпадет с точкой W пересечения нормали N-N и линии центров О 1 О 2 . Точка W называется полюсом зацепления, а окружности с диаметрами d w1 и d w2 , которые касаются в полюсе зацепления и перекатываются друг по другу без скольжения, называются начальными.

Для обеспечения постоянства передаточного отношения теоретически один из профилей может быть выбран произвольно, но форма профиля сопряженного зуба должна быть строго определенной для выполнения условия (1.82). Наиболее технологичными в изготовлении и эксплуатации являются эвольвентные профили. Существуют и другие виды зацепления: циклоидальное, цевочное, зацепление Новикова, удовлетворяющие данному требованию.


Виды кинематических пар и их краткая характеристика.

Кинематическая пара, называется соединение двух соприкасающихся звеньев, допускающее их относительное движение.

Совокупность поверхностей, линий, точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом звена (элементом кинематической пары).

Кинематические пары (КП) классифицируются по следующим признакам:

по виду места контакта (места связи) поверхностей звеньев:

низшие, в которых контакт звеньев осуществляется по плоскости или поверхности (пары скольжения);

высшие, в которых контакт звеньев осуществляется по линиям или точкам (пары, допускающие скольжение с перекатыванием).

по относительному движению звеньев, образующих пару:

вращательные;

поступательные;

винтовые;

сферические.

по способу замыкания (обеспечения контакта звеньев пары):

силовое (за счет действия сил веса или силы упругости пружины);

геометрическое (за счет конструкции рабочих поверхностей пары).


Close